Bayesian Game-Driven Incentive Mechanism for Blockchain-Enabled Secure Federated Learning in 6 G Wireless Networks

块链 计算机科学 激励 机制(生物学) 计算机网络 无线 博弈论 贝叶斯概率 无线网络 计算机安全 分布式计算 人工智能 电信 微观经济学 经济 认识论 哲学
作者
Lingyi Cai,Yueyue Dai,Qiwei Hu,Jiaxi Zhou,Yan Zhang,Tao Jiang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 4951-4964
标识
DOI:10.1109/tnse.2024.3405070
摘要

The sixth-generation (6 G) wireless networks are envisioned to build a data-driven digital world with widespread Artificial Intelligence (AI). Federated learning (FL) is a distributed AI paradigm that coordinates different data owners to train shared AI models cooperatively. However, traditional FL faces challenges in practically deploying in 6 G networks: (i) the central server becomes the bottleneck and fails to identify clients' malicious behaviors, and (ii) the lack of incentive mechanisms makes heterogeneous nodes hard to collaborate when considering unilateral returns. To address the above challenges, we first propose a blockchain-enabled FL (BFL) framework where clients' malicious behaviors could be identified without a central server. Then we propose a Bayesian game-driven incentive mechanism to encourage honest nodes to provide valid models while hindering the training interference from malicious clients. Moreover, we propose a dynamic data contribution scheme to schedule data resources equitably while ensuring model performance. Finally, a Proof-of-Incentive consensus mechanism is designed as benign impetuses to guide the system toward the direction of more secure model aggregation and higher incentives. Experimental results show that our proposed schemes can obtain high-precision models even with malicious clients and effectively motivate honest nodes to join FL in 6 G networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
1秒前
han完成签到,获得积分10
1秒前
hanfuren完成签到,获得积分10
1秒前
阿藏完成签到,获得积分10
1秒前
Hoshiiii完成签到,获得积分10
1秒前
1秒前
顶刊在逃一作完成签到,获得积分10
1秒前
1秒前
lychee完成签到,获得积分10
2秒前
magickou完成签到,获得积分10
2秒前
ZhihaoYang完成签到,获得积分10
2秒前
guangshuang完成签到 ,获得积分10
2秒前
zhanhunliu发布了新的文献求助10
3秒前
NexusExplorer应助复杂项链采纳,获得10
3秒前
难过梦竹完成签到,获得积分10
3秒前
FashionBoy应助1112222采纳,获得10
3秒前
脂蛋白抗原完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Shuey完成签到,获得积分10
4秒前
huang发布了新的文献求助10
4秒前
yeape发布了新的文献求助10
5秒前
Cyril发布了新的文献求助10
5秒前
胖飞飞完成签到,获得积分10
5秒前
沉静蘑菇完成签到,获得积分20
6秒前
风趣邴发布了新的文献求助30
6秒前
小K完成签到,获得积分10
6秒前
6秒前
stargazer完成签到,获得积分10
6秒前
机灵安白完成签到,获得积分10
6秒前
整齐冬瓜发布了新的文献求助10
6秒前
小二郎应助rgu采纳,获得10
7秒前
Iridesent0v0发布了新的文献求助10
7秒前
zxr完成签到,获得积分10
7秒前
8秒前
哈喽完成签到,获得积分10
8秒前
zhanhunliu完成签到,获得积分10
8秒前
111完成签到 ,获得积分20
9秒前
JASON完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874