亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields

透视图(图形) 分割 融合 路径(计算) 感受野 人工智能 计算机科学 计算机视觉 心理学 认知心理学 语言学 计算机网络 哲学
作者
Jintong Hu,Siyan Chen,Zhiyi Pan,Sen Zeng,Wenming Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.14052
摘要

Precise segmentation of medical images is fundamental for extracting critical clinical information, which plays a pivotal role in enhancing the accuracy of diagnoses, formulating effective treatment plans, and improving patient outcomes. Although Convolutional Neural Networks (CNNs) and non-local attention methods have achieved notable success in medical image segmentation, they either struggle to capture long-range spatial dependencies due to their reliance on local features, or face significant computational and feature integration challenges when attempting to address this issue with global attention mechanisms. To overcome existing limitations in medical image segmentation, we propose a novel architecture, Perspective+ Unet. This framework is characterized by three major innovations: (i) It introduces a dual-pathway strategy at the encoder stage that combines the outcomes of traditional and dilated convolutions. This not only maintains the local receptive field but also significantly expands it, enabling better comprehension of the global structure of images while retaining detail sensitivity. (ii) The framework incorporates an efficient non-local transformer block, named ENLTB, which utilizes kernel function approximation for effective long-range dependency capture with linear computational and spatial complexity. (iii) A Spatial Cross-Scale Integrator strategy is employed to merge global dependencies and local contextual cues across model stages, meticulously refining features from various levels to harmonize global and local information. Experimental results on the ACDC and Synapse datasets demonstrate the effectiveness of our proposed Perspective+ Unet. The code is available in the supplementary material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂聂完成签到,获得积分20
6秒前
16秒前
连安阳完成签到,获得积分10
21秒前
聂聂发布了新的文献求助10
1分钟前
1分钟前
1分钟前
FXe发布了新的文献求助30
1分钟前
李健的小迷弟应助小满采纳,获得10
1分钟前
小马甲应助FXe采纳,获得30
1分钟前
1分钟前
小满发布了新的文献求助10
2分钟前
IXF完成签到,获得积分10
2分钟前
小葛完成签到,获得积分10
2分钟前
上官若男应助小满采纳,获得10
2分钟前
2分钟前
彭晓雅发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI6应助Positive采纳,获得10
2分钟前
FXe发布了新的文献求助30
2分钟前
小野菌发布了新的文献求助10
2分钟前
领导范儿应助彭晓雅采纳,获得10
2分钟前
FXe完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
在水一方应助小野菌采纳,获得10
2分钟前
obedVL完成签到,获得积分10
3分钟前
3分钟前
Lab夜归人发布了新的文献求助10
3分钟前
3分钟前
小野菌发布了新的文献求助10
3分钟前
3分钟前
我是老大应助小野菌采纳,获得10
3分钟前
3分钟前
Katniss发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5579231
求助须知:如何正确求助?哪些是违规求助? 4663908
关于积分的说明 14748584
捐赠科研通 4605195
什么是DOI,文献DOI怎么找? 2527227
邀请新用户注册赠送积分活动 1496805
关于科研通互助平台的介绍 1466053