Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields

透视图(图形) 分割 融合 路径(计算) 感受野 人工智能 计算机科学 计算机视觉 心理学 认知心理学 语言学 计算机网络 哲学
作者
Jintong Hu,Siyan Chen,Zhiyi Pan,Sen Zeng,Wenming Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.14052
摘要

Precise segmentation of medical images is fundamental for extracting critical clinical information, which plays a pivotal role in enhancing the accuracy of diagnoses, formulating effective treatment plans, and improving patient outcomes. Although Convolutional Neural Networks (CNNs) and non-local attention methods have achieved notable success in medical image segmentation, they either struggle to capture long-range spatial dependencies due to their reliance on local features, or face significant computational and feature integration challenges when attempting to address this issue with global attention mechanisms. To overcome existing limitations in medical image segmentation, we propose a novel architecture, Perspective+ Unet. This framework is characterized by three major innovations: (i) It introduces a dual-pathway strategy at the encoder stage that combines the outcomes of traditional and dilated convolutions. This not only maintains the local receptive field but also significantly expands it, enabling better comprehension of the global structure of images while retaining detail sensitivity. (ii) The framework incorporates an efficient non-local transformer block, named ENLTB, which utilizes kernel function approximation for effective long-range dependency capture with linear computational and spatial complexity. (iii) A Spatial Cross-Scale Integrator strategy is employed to merge global dependencies and local contextual cues across model stages, meticulously refining features from various levels to harmonize global and local information. Experimental results on the ACDC and Synapse datasets demonstrate the effectiveness of our proposed Perspective+ Unet. The code is available in the supplementary material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助仙女爷爷采纳,获得10
刚刚
草莓派完成签到,获得积分10
刚刚
Karma发布了新的文献求助10
刚刚
猪猪hero应助DARLING002采纳,获得10
刚刚
蔡一完成签到,获得积分10
刚刚
聪明帅哥发布了新的文献求助10
1秒前
妮儿发布了新的文献求助10
1秒前
wills完成签到,获得积分10
1秒前
BowieHuang应助wxy采纳,获得10
1秒前
qijie完成签到,获得积分10
1秒前
1秒前
2秒前
英俊的铭应助kiiso采纳,获得10
2秒前
Lucas应助ddw采纳,获得10
3秒前
3秒前
3秒前
yao chen发布了新的文献求助10
4秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
6秒前
妮儿完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
XLL小绿绿完成签到,获得积分10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得20
7秒前
英姑应助ngldy采纳,获得10
7秒前
小米发布了新的文献求助10
7秒前
Rjj发布了新的文献求助10
7秒前
李健应助科研通管家采纳,获得20
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760635
求助须知:如何正确求助?哪些是违规求助? 5525448
关于积分的说明 15397980
捐赠科研通 4897422
什么是DOI,文献DOI怎么找? 2634176
邀请新用户注册赠送积分活动 1582268
关于科研通互助平台的介绍 1537637