Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields

透视图(图形) 分割 融合 路径(计算) 感受野 人工智能 计算机科学 计算机视觉 心理学 认知心理学 语言学 计算机网络 哲学
作者
Jintong Hu,Siyan Chen,Zhiyi Pan,Sen Zeng,Wenming Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.14052
摘要

Precise segmentation of medical images is fundamental for extracting critical clinical information, which plays a pivotal role in enhancing the accuracy of diagnoses, formulating effective treatment plans, and improving patient outcomes. Although Convolutional Neural Networks (CNNs) and non-local attention methods have achieved notable success in medical image segmentation, they either struggle to capture long-range spatial dependencies due to their reliance on local features, or face significant computational and feature integration challenges when attempting to address this issue with global attention mechanisms. To overcome existing limitations in medical image segmentation, we propose a novel architecture, Perspective+ Unet. This framework is characterized by three major innovations: (i) It introduces a dual-pathway strategy at the encoder stage that combines the outcomes of traditional and dilated convolutions. This not only maintains the local receptive field but also significantly expands it, enabling better comprehension of the global structure of images while retaining detail sensitivity. (ii) The framework incorporates an efficient non-local transformer block, named ENLTB, which utilizes kernel function approximation for effective long-range dependency capture with linear computational and spatial complexity. (iii) A Spatial Cross-Scale Integrator strategy is employed to merge global dependencies and local contextual cues across model stages, meticulously refining features from various levels to harmonize global and local information. Experimental results on the ACDC and Synapse datasets demonstrate the effectiveness of our proposed Perspective+ Unet. The code is available in the supplementary material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香芋完成签到 ,获得积分10
刚刚
nihao发布了新的文献求助10
刚刚
刚刚
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
韩野发布了新的文献求助10
5秒前
山海完成签到,获得积分10
5秒前
penpen发布了新的文献求助10
5秒前
6秒前
张芃尧完成签到,获得积分20
7秒前
天天快乐应助CHEN采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
SciGPT应助hearz采纳,获得10
9秒前
9秒前
孙元应助zzz采纳,获得10
10秒前
10秒前
元谷雪发布了新的文献求助10
11秒前
英姑应助Vizz采纳,获得10
11秒前
起个名真难完成签到,获得积分10
11秒前
幻影完成签到 ,获得积分10
11秒前
ayintree完成签到,获得积分10
12秒前
12秒前
小蘑菇应助mm采纳,获得10
12秒前
Nan发布了新的文献求助200
12秒前
14秒前
打工人发布了新的文献求助10
14秒前
张芃尧发布了新的文献求助10
15秒前
Franco发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
10086发布了新的文献求助80
17秒前
17秒前
Judy发布了新的文献求助10
17秒前
情怀应助阿士大夫采纳,获得10
18秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233