Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields

透视图(图形) 分割 融合 路径(计算) 感受野 人工智能 计算机科学 计算机视觉 心理学 认知心理学 语言学 计算机网络 哲学
作者
Jintong Hu,Siyan Chen,Zhiyi Pan,Sen Zeng,Wenming Yang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.14052
摘要

Precise segmentation of medical images is fundamental for extracting critical clinical information, which plays a pivotal role in enhancing the accuracy of diagnoses, formulating effective treatment plans, and improving patient outcomes. Although Convolutional Neural Networks (CNNs) and non-local attention methods have achieved notable success in medical image segmentation, they either struggle to capture long-range spatial dependencies due to their reliance on local features, or face significant computational and feature integration challenges when attempting to address this issue with global attention mechanisms. To overcome existing limitations in medical image segmentation, we propose a novel architecture, Perspective+ Unet. This framework is characterized by three major innovations: (i) It introduces a dual-pathway strategy at the encoder stage that combines the outcomes of traditional and dilated convolutions. This not only maintains the local receptive field but also significantly expands it, enabling better comprehension of the global structure of images while retaining detail sensitivity. (ii) The framework incorporates an efficient non-local transformer block, named ENLTB, which utilizes kernel function approximation for effective long-range dependency capture with linear computational and spatial complexity. (iii) A Spatial Cross-Scale Integrator strategy is employed to merge global dependencies and local contextual cues across model stages, meticulously refining features from various levels to harmonize global and local information. Experimental results on the ACDC and Synapse datasets demonstrate the effectiveness of our proposed Perspective+ Unet. The code is available in the supplementary material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxzuam完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
传奇3应助277采纳,获得10
4秒前
5秒前
WF完成签到,获得积分10
5秒前
6秒前
7秒前
youyouG发布了新的文献求助30
8秒前
8秒前
9秒前
QIU发布了新的文献求助10
10秒前
高大绝义发布了新的文献求助10
10秒前
11秒前
usami42发布了新的文献求助30
11秒前
科研通AI2S应助chu采纳,获得10
11秒前
challengexun发布了新的文献求助10
14秒前
dll发布了新的文献求助10
14秒前
15秒前
懵懂的愫完成签到 ,获得积分10
16秒前
友好石头完成签到,获得积分20
16秒前
youyouG完成签到,获得积分10
17秒前
17秒前
17秒前
风中的英发布了新的文献求助30
21秒前
标致溪流发布了新的文献求助10
21秒前
21秒前
了又柳发布了新的文献求助10
21秒前
liaomr发布了新的文献求助10
22秒前
challengexun完成签到,获得积分10
24秒前
usami42完成签到,获得积分10
26秒前
无花果应助aurora采纳,获得10
27秒前
南瓜难应助wj采纳,获得20
27秒前
27秒前
27秒前
晴月发布了新的文献求助10
27秒前
28秒前
小米粒发布了新的文献求助10
28秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112