流水车间调度
计算机科学
遗传算法
数学优化
调度(生产过程)
作业车间调度
算法
并行计算
数学
地铁列车时刻表
操作系统
作者
Toufik Mzili,Toufik Mzili,Mohammed Essaid Riffi,Dragan Pamučar,Vladimir Šimić,Laith Abualigah,Bandar Almohsen
标识
DOI:10.22190/fume230615028m
摘要
This paper presents a novel hybrid approach, fusing genetic algorithms (GA) and penguin search optimization (PSeOA), to address the flow shop scheduling problem (FSSP). GA utilizes selection, crossover, and mutation inspired by natural selection, while PSeOA emulates penguin foraging behavior for efficient exploration. The approach integrates GA's genetic diversity and solution space exploration with PSeOA's rapid convergence, further improved with FSSP-specific modifications. Extensive experiments validate its efficacy, outperforming pure GA, PSeOA, and other metaheuristics.
科研通智能强力驱动
Strongly Powered by AbleSci AI