Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim Cuong Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:127: 104345-104345 被引量:23
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi发布了新的文献求助10
刚刚
呆呆完成签到,获得积分10
1秒前
blebui应助姜茶采纳,获得10
1秒前
幼稚园小新完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
2秒前
snowball完成签到,获得积分10
2秒前
3秒前
duoduozs发布了新的文献求助10
3秒前
velpro完成签到,获得积分10
3秒前
qqqq完成签到,获得积分10
3秒前
4秒前
4秒前
溪风完成签到,获得积分10
4秒前
ting发布了新的文献求助10
5秒前
6秒前
Xxxnnian发布了新的文献求助30
6秒前
听风暖完成签到 ,获得积分10
7秒前
li发布了新的文献求助10
7秒前
赘婿应助伊布采纳,获得10
7秒前
gaga完成签到,获得积分10
7秒前
小蘑菇应助reck采纳,获得10
8秒前
清风荷影完成签到 ,获得积分10
8秒前
酷波er应助动如脱兔采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
圈圈发布了新的文献求助10
10秒前
易达发布了新的文献求助10
10秒前
追梦人完成签到,获得积分10
10秒前
10秒前
实验室扛把子完成签到,获得积分10
10秒前
在水一方应助清爽忆山采纳,获得10
11秒前
小马甲应助日月山河永在采纳,获得10
11秒前
娃娃发布了新的文献求助10
12秒前
12秒前
任医生发布了新的文献求助10
12秒前
冷眼观潮完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672