Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim Cuong Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:127: 104345-104345 被引量:31
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Active完成签到,获得积分10
刚刚
scholars完成签到,获得积分10
1秒前
ohno耶耶耶发布了新的文献求助10
2秒前
SweetyANN发布了新的文献求助10
2秒前
2秒前
niceweiwei发布了新的文献求助10
3秒前
ZG发布了新的文献求助10
3秒前
3秒前
迷路安雁完成签到,获得积分10
4秒前
4秒前
yuery完成签到,获得积分10
4秒前
牛牛牛完成签到,获得积分10
4秒前
A1len完成签到,获得积分10
5秒前
爱写论文的小胡完成签到,获得积分10
5秒前
拉长的问晴完成签到,获得积分10
6秒前
Yukikig完成签到,获得积分10
6秒前
哈哈哈哈哈完成签到,获得积分10
6秒前
tofms完成签到,获得积分10
6秒前
没有蛀牙发布了新的文献求助10
6秒前
Starain完成签到,获得积分10
6秒前
WW完成签到,获得积分10
7秒前
7秒前
7秒前
zhengke924完成签到,获得积分10
8秒前
aaaaa完成签到,获得积分10
8秒前
GERRARD完成签到,获得积分10
8秒前
yuery发布了新的文献求助10
8秒前
街道办事部完成签到,获得积分10
8秒前
我是老大应助懿甜采纳,获得10
9秒前
牛牛牛发布了新的文献求助10
10秒前
OMR123完成签到,获得积分10
10秒前
CZF完成签到 ,获得积分10
10秒前
11秒前
CipherSage应助夏姬宁静采纳,获得10
11秒前
机智访琴完成签到,获得积分10
11秒前
Emma完成签到,获得积分10
12秒前
粗心的草莓完成签到,获得积分10
12秒前
贪玩海之完成签到,获得积分10
12秒前
Kirito完成签到,获得积分10
12秒前
科研牛人完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874