亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim‐Cuong T. Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:127: 104345-104345 被引量:40
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjh发布了新的文献求助10
8秒前
可靠的寒风完成签到,获得积分10
13秒前
14秒前
caca完成签到,获得积分0
38秒前
44秒前
47秒前
单纯的石头完成签到 ,获得积分10
48秒前
沉鱼CXX完成签到,获得积分10
51秒前
53秒前
CATH完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助sdniuidifod采纳,获得10
1分钟前
1分钟前
今后应助科研圈外人采纳,获得10
2分钟前
2分钟前
Akim应助零度采纳,获得10
2分钟前
wbh发布了新的文献求助10
2分钟前
2分钟前
wyx完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
sdniuidifod发布了新的文献求助10
2分钟前
爱笑的斑马完成签到,获得积分10
2分钟前
小二郎应助科研圈外人采纳,获得10
2分钟前
英俊的铭应助wbh采纳,获得10
2分钟前
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研圈外人采纳,获得10
2分钟前
2分钟前
2分钟前
田様应助科研圈外人采纳,获得10
2分钟前
小土豆完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
wbh完成签到,获得积分10
3分钟前
wbh发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470116
求助须知:如何正确求助?哪些是违规求助? 4573050
关于积分的说明 14337956
捐赠科研通 4499966
什么是DOI,文献DOI怎么找? 2465503
邀请新用户注册赠送积分活动 1453845
关于科研通互助平台的介绍 1428427