Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim‐Cuong T. Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:127: 104345-104345 被引量:40
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Judy发布了新的文献求助10
刚刚
Wang完成签到,获得积分10
刚刚
香蕉觅云应助认真的不评采纳,获得10
1秒前
cui发布了新的文献求助30
1秒前
1秒前
微笑向卉发布了新的文献求助10
1秒前
千纸鹤完成签到 ,获得积分10
1秒前
无花果应助月九采纳,获得10
1秒前
hebilie完成签到,获得积分10
2秒前
2秒前
2秒前
打打应助阔达尔白采纳,获得10
3秒前
彪壮的小五发布了新的文献求助200
3秒前
情怀应助可耐的不平采纳,获得10
3秒前
TNU发布了新的文献求助10
3秒前
潇潇发布了新的文献求助10
3秒前
3秒前
无语的安卉发布了新的文献求助150
3秒前
无极微光应助Wang采纳,获得20
3秒前
3秒前
无极微光应助派大星采纳,获得20
3秒前
优雅的从安关注了科研通微信公众号
3秒前
4秒前
4秒前
王77发布了新的文献求助10
4秒前
5秒前
6秒前
小天才关注了科研通微信公众号
6秒前
Garrett完成签到 ,获得积分10
7秒前
三山发布了新的文献求助10
7秒前
adobe发布了新的文献求助10
7秒前
陈咩咩发布了新的文献求助10
7秒前
贪玩飞珍发布了新的文献求助10
8秒前
典雅的俊驰应助huzefeng采纳,获得30
8秒前
9秒前
JIE发布了新的文献求助10
9秒前
9秒前
烟花应助兮豫采纳,获得10
9秒前
Judy完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526436
求助须知:如何正确求助?哪些是违规求助? 4616609
关于积分的说明 14554414
捐赠科研通 4554801
什么是DOI,文献DOI怎么找? 2496073
邀请新用户注册赠送积分活动 1476438
关于科研通互助平台的介绍 1448035