Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim Cuong Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:127: 104345-104345 被引量:36
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌冬面发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
番茄爱喝粥完成签到,获得积分10
3秒前
3秒前
livian发布了新的文献求助10
3秒前
DL发布了新的文献求助10
4秒前
4秒前
言西早完成签到 ,获得积分10
5秒前
WWWUBING完成签到,获得积分10
5秒前
5秒前
红柚完成签到,获得积分10
7秒前
7秒前
李爱国应助tdtk采纳,获得10
7秒前
Lxxixixi发布了新的文献求助10
7秒前
刘凯完成签到,获得积分10
8秒前
科研通AI6应助yl采纳,获得10
8秒前
CR7应助乌冬面采纳,获得20
8秒前
8秒前
8秒前
小白发布了新的文献求助20
8秒前
9秒前
就这样完成签到 ,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
zhazhalaoke应助科研通管家采纳,获得10
10秒前
zhazhalaoke应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
聪慧小霜应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
聪慧小霜应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871