Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim Cuong Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:127: 104345-104345 被引量:18
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助iris采纳,获得10
2秒前
qiujin发布了新的文献求助10
4秒前
失眠的怀柔完成签到 ,获得积分10
5秒前
5秒前
小宇完成签到 ,获得积分20
6秒前
欧阳璐完成签到,获得积分10
8秒前
小写完成签到,获得积分20
8秒前
星辰大海应助一方采纳,获得10
9秒前
12秒前
王锦源应助白智妍采纳,获得10
14秒前
iris发布了新的文献求助10
16秒前
科目三应助ggg采纳,获得10
18秒前
21秒前
wuta完成签到,获得积分10
22秒前
英俊的铭应助橙子采纳,获得10
22秒前
啦啦啦哟完成签到,获得积分10
23秒前
酷波er应助cindy采纳,获得10
23秒前
CSL完成签到,获得积分10
23秒前
1GE完成签到,获得积分10
27秒前
27秒前
zorro3574完成签到,获得积分10
29秒前
xiaomei51完成签到,获得积分10
30秒前
31秒前
ggg发布了新的文献求助10
31秒前
aizhujun完成签到,获得积分10
32秒前
shinysparrow应助叮叮当当采纳,获得100
33秒前
菜鸡完成签到,获得积分10
33秒前
传奇3应助xiaomei51采纳,获得10
34秒前
35秒前
科研通AI2S应助博修采纳,获得10
36秒前
欣慰的茉莉完成签到 ,获得积分10
37秒前
彳亍完成签到,获得积分10
38秒前
小写发布了新的文献求助10
39秒前
现在到未来完成签到,获得积分10
40秒前
不问悲欢发布了新的文献求助10
43秒前
43秒前
科研通AI2S应助iris采纳,获得10
45秒前
汉堡包应助iris采纳,获得10
45秒前
狗蛋完成签到,获得积分10
46秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262608
求助须知:如何正确求助?哪些是违规求助? 2903260
关于积分的说明 8324518
捐赠科研通 2573293
什么是DOI,文献DOI怎么找? 1398140
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632623