Temporomandibular joint segmentation in MRI images using deep learning

颞下颌关节 髁突 分割 磁共振成像 人工智能 计算机科学 卷积神经网络 人口 医学 解剖 口腔正畸科 放射科 环境卫生
作者
Mengxun Li,Kumaradevan Punithakumar,Paul W. Major,Lawrence H. Le,Kim‐Cuong T. Nguyen,Camila Pachêco‐Pereira,Neelambar R. Kaipatur,Brian Nebbe,Jacob L. Jaremko,Fabiana T. Almeida
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:127: 104345-104345 被引量:40
标识
DOI:10.1016/j.jdent.2022.104345
摘要

Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in MRIs usually suffer from low resolution and contrast, and it is difficult to identify them. In this study, we applied two convolutional neural networks (CNN) to delineate mandibular condyle, articular eminence, and TMJ disc in MRI images.The models were trained on MRI images from 100 patients and validated on images from 40 patients using 2D slices and 3D volume as input, respectively. Data augmentation and five-fold cross-validation scheme were applied to further regularize the models. The accuracy of the models was then compared with four raters having different expertise in reading TMJ-MRI images to evaluate the performance of the models.Both models performed well in segmenting the three anatomical structures. A Dice coefficient of about 0.7 for the articular disc, more than 0.9 for the mandibular condyle, and Hausdorff distance of about 2mm for the articular eminence were achieved in both models. The models reached near-expert performance for the segmentation of TMJ articular disc and performed close to the expert in the segmentation of mandibular condyle and articular eminence. They also surpassed non-experts in segmenting the three anatomical structures.This study demonstrated that CNN-based segmentation models can be a reliable tool to assist clinicians identifying key anatomy on TMJ-MRIs. The approach also paves the way for automatic diagnosis of TMD.Accurately locating the articular disc is the hardest and most crucial step in the interpretation of TMJ-MRIs and consequently in the diagnosis of TMJ-ID. Automated software that assists in locating the articular disc and its surrounding structures would improve the reliability of TMJ-MRI interpretation, save time and assist in reader training. It will also serve as a foundation for additional automated analysis of pathology in TMJ structures to aid in TMD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
畅学天下发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
平常的行云完成签到,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2222222222完成签到,获得积分20
1秒前
jojo完成签到 ,获得积分10
1秒前
姚子敏发布了新的文献求助10
1秒前
2秒前
wanci应助生动的保温杯采纳,获得10
2秒前
科研通AI6应助霸气侧漏采纳,获得10
2秒前
dahua发布了新的文献求助10
2秒前
迪克大完成签到,获得积分10
2秒前
朱良宇完成签到,获得积分10
2秒前
2秒前
3秒前
Claudia完成签到,获得积分20
3秒前
Tian发布了新的文献求助10
3秒前
3秒前
dddddd完成签到,获得积分10
3秒前
3秒前
蔡蔡蔡发布了新的文献求助10
4秒前
Dodo发布了新的文献求助20
4秒前
4秒前
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077