Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction

元启发式 均方误差 抗压强度 随机森林 人工神经网络 岩体分类 计算机科学 算法 决定系数 支持向量机 相关系数 机器学习 岩土工程 统计 地质学 材料科学 数学 人工智能 复合材料
作者
Jingze Li,Chuanqi Li,Shaohe Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:131: 109729-109729 被引量:41
标识
DOI:10.1016/j.asoc.2022.109729
摘要

The uniaxial compressive strength (UCS) is one of the most important parameters for judging the mechanical behavior of rock mass in rock engineering design and excavation such as tunnels, subways, drilling, slope and mines stability. However, it is difficult to obtain UCS accurately and quickly in traditional experimental operations. Therefore, prediction of the UCS of rock is of high practical significance in reducing calculation time and improving the precision of results. In this investigation, estimation and prediction of the UCS obtained from various rock in the laboratory on the base of artificial intelligence algorithms and empirical approaches were carried out. A total of 226 rock samples were selected to generate a dataset including five individual parameters, Schmidt hardness rebound number (SHR), P- wave velocity ( V p ), point load strength (Is (50) ), porosity (n), and density (D). The artificial neural network (ANN), kernel based extreme learning machine (KELM), support vector regression (SVR), empirical equations and a hybrid model Slime Mould Algorithm-based random forest (SMA- RF) were developed to predict the UCS. Four performance indicators named the root mean square error (RMSE), the determination coefficient (R 2 ), the mean absolute error (MAE) and the variance accounted for (VAF) were utilized to evaluate the performance of all models in forecasting the UCS of rock. The results of performance comparison demonstrated that the SMA- RF model has the highest values of R 2 (train: 0.9907 and test: 0.9705) and VAF (train: 99.0713 % and test: 97.0753 %), the lowest values of RMSE (train: 4.1478 and test: 7.7824) and MAE (train: 3.0096 and test: 5.8532) among the other models. The research in this study provides an effective attempt to further improve the accuracy of UCS prediction. • Application of six emerging Metaheuristic Optimization Algorithms and RF model in predicting the uniaxial compressive strength (UCS) of rock. • A comprehensive dataset of 226 rock samples with five properties was generated on the base of the four published articles. • The TSO-RF represents the best performance in UCS prediction among all hybrid RF models and other AI models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助慈祥的若风采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
小云杉发布了新的文献求助10
3秒前
我先睡了发布了新的文献求助10
5秒前
木谦发布了新的文献求助10
6秒前
7秒前
受伤破茧发布了新的文献求助10
9秒前
小二郎应助yummy采纳,获得10
9秒前
Gdddd完成签到,获得积分10
10秒前
完美世界应助jerry_x采纳,获得10
10秒前
活力皮皮虾完成签到,获得积分10
10秒前
10秒前
蟒玉朝天完成签到 ,获得积分10
11秒前
1111完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
Orange应助a553355采纳,获得10
14秒前
15秒前
Hcc发布了新的文献求助10
15秒前
1111发布了新的文献求助10
16秒前
16秒前
16秒前
呆萌的傲之完成签到,获得积分10
16秒前
隐形的星月完成签到,获得积分20
17秒前
JamesPei应助受伤破茧采纳,获得10
17秒前
152完成签到 ,获得积分10
17秒前
18秒前
18秒前
CipherSage应助潇洒斑马采纳,获得30
19秒前
19秒前
张启凤完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
大轩发布了新的文献求助10
20秒前
21秒前
命苦科研人完成签到,获得积分10
22秒前
a553355发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729040
求助须知:如何正确求助?哪些是违规求助? 5315724
关于积分的说明 15315600
捐赠科研通 4876049
什么是DOI,文献DOI怎么找? 2619186
邀请新用户注册赠送积分活动 1568758
关于科研通互助平台的介绍 1525247