Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction

元启发式 均方误差 抗压强度 随机森林 人工神经网络 岩体分类 计算机科学 算法 决定系数 支持向量机 相关系数 机器学习 岩土工程 统计 地质学 材料科学 数学 人工智能 复合材料
作者
Jingze Li,Chuanqi Li,Shaohe Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:131: 109729-109729 被引量:41
标识
DOI:10.1016/j.asoc.2022.109729
摘要

The uniaxial compressive strength (UCS) is one of the most important parameters for judging the mechanical behavior of rock mass in rock engineering design and excavation such as tunnels, subways, drilling, slope and mines stability. However, it is difficult to obtain UCS accurately and quickly in traditional experimental operations. Therefore, prediction of the UCS of rock is of high practical significance in reducing calculation time and improving the precision of results. In this investigation, estimation and prediction of the UCS obtained from various rock in the laboratory on the base of artificial intelligence algorithms and empirical approaches were carried out. A total of 226 rock samples were selected to generate a dataset including five individual parameters, Schmidt hardness rebound number (SHR), P- wave velocity ( V p ), point load strength (Is (50) ), porosity (n), and density (D). The artificial neural network (ANN), kernel based extreme learning machine (KELM), support vector regression (SVR), empirical equations and a hybrid model Slime Mould Algorithm-based random forest (SMA- RF) were developed to predict the UCS. Four performance indicators named the root mean square error (RMSE), the determination coefficient (R 2 ), the mean absolute error (MAE) and the variance accounted for (VAF) were utilized to evaluate the performance of all models in forecasting the UCS of rock. The results of performance comparison demonstrated that the SMA- RF model has the highest values of R 2 (train: 0.9907 and test: 0.9705) and VAF (train: 99.0713 % and test: 97.0753 %), the lowest values of RMSE (train: 4.1478 and test: 7.7824) and MAE (train: 3.0096 and test: 5.8532) among the other models. The research in this study provides an effective attempt to further improve the accuracy of UCS prediction. • Application of six emerging Metaheuristic Optimization Algorithms and RF model in predicting the uniaxial compressive strength (UCS) of rock. • A comprehensive dataset of 226 rock samples with five properties was generated on the base of the four published articles. • The TSO-RF represents the best performance in UCS prediction among all hybrid RF models and other AI models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吱吱发布了新的文献求助10
刚刚
爱笑的珩发布了新的文献求助10
2秒前
2秒前
彳亍宣发布了新的文献求助10
2秒前
7秒前
7秒前
唐宇欣完成签到,获得积分10
7秒前
7秒前
吴1完成签到,获得积分10
8秒前
9秒前
dafu发布了新的文献求助10
9秒前
9秒前
LAN0528发布了新的文献求助10
10秒前
11秒前
西西发布了新的文献求助10
11秒前
AN完成签到,获得积分10
12秒前
科研狗发布了新的文献求助10
12秒前
CipherSage应助拒绝去偏旁采纳,获得10
12秒前
伶俐以彤发布了新的文献求助20
13秒前
落后丸子发布了新的文献求助10
14秒前
帆320完成签到,获得积分10
14秒前
14秒前
15秒前
夏天完成签到,获得积分10
15秒前
852应助甜美翠安采纳,获得10
16秒前
linyu发布了新的文献求助10
16秒前
微笑妖丽发布了新的文献求助10
17秒前
英俊的铭应助perdgs采纳,获得10
18秒前
醉熏的奇异果完成签到,获得积分10
18秒前
SciGPT应助帆320采纳,获得10
18秒前
隐形曼青应助dafu采纳,获得10
18秒前
Ice完成签到,获得积分10
19秒前
行周发布了新的文献求助20
20秒前
21秒前
今后应助yaoqing采纳,获得10
22秒前
QiongYin_123完成签到 ,获得积分10
22秒前
22秒前
凌源枫完成签到 ,获得积分10
23秒前
李健应助wbs采纳,获得30
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241