Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction

元启发式 均方误差 抗压强度 随机森林 人工神经网络 岩体分类 计算机科学 算法 决定系数 支持向量机 相关系数 机器学习 岩土工程 统计 地质学 材料科学 数学 人工智能 复合材料
作者
Jingze Li,Chuanqi Li,Shaohe Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:131: 109729-109729 被引量:41
标识
DOI:10.1016/j.asoc.2022.109729
摘要

The uniaxial compressive strength (UCS) is one of the most important parameters for judging the mechanical behavior of rock mass in rock engineering design and excavation such as tunnels, subways, drilling, slope and mines stability. However, it is difficult to obtain UCS accurately and quickly in traditional experimental operations. Therefore, prediction of the UCS of rock is of high practical significance in reducing calculation time and improving the precision of results. In this investigation, estimation and prediction of the UCS obtained from various rock in the laboratory on the base of artificial intelligence algorithms and empirical approaches were carried out. A total of 226 rock samples were selected to generate a dataset including five individual parameters, Schmidt hardness rebound number (SHR), P- wave velocity ( V p ), point load strength (Is (50) ), porosity (n), and density (D). The artificial neural network (ANN), kernel based extreme learning machine (KELM), support vector regression (SVR), empirical equations and a hybrid model Slime Mould Algorithm-based random forest (SMA- RF) were developed to predict the UCS. Four performance indicators named the root mean square error (RMSE), the determination coefficient (R 2 ), the mean absolute error (MAE) and the variance accounted for (VAF) were utilized to evaluate the performance of all models in forecasting the UCS of rock. The results of performance comparison demonstrated that the SMA- RF model has the highest values of R 2 (train: 0.9907 and test: 0.9705) and VAF (train: 99.0713 % and test: 97.0753 %), the lowest values of RMSE (train: 4.1478 and test: 7.7824) and MAE (train: 3.0096 and test: 5.8532) among the other models. The research in this study provides an effective attempt to further improve the accuracy of UCS prediction. • Application of six emerging Metaheuristic Optimization Algorithms and RF model in predicting the uniaxial compressive strength (UCS) of rock. • A comprehensive dataset of 226 rock samples with five properties was generated on the base of the four published articles. • The TSO-RF represents the best performance in UCS prediction among all hybrid RF models and other AI models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长言发布了新的文献求助10
刚刚
科研通AI6应助黎星采纳,获得10
刚刚
树子发布了新的文献求助10
刚刚
muzi完成签到,获得积分10
1秒前
lulululi发布了新的文献求助10
1秒前
明理问寒发布了新的文献求助10
1秒前
辛菜头完成签到,获得积分10
1秒前
活力盼晴完成签到,获得积分10
1秒前
汉堡包应助不怕困难采纳,获得10
2秒前
开放巧荷关注了科研通微信公众号
2秒前
2秒前
欧小仙发布了新的文献求助10
3秒前
3秒前
3秒前
鱼鱼发布了新的文献求助10
3秒前
3秒前
HAHAHA完成签到,获得积分10
4秒前
11111发布了新的文献求助10
4秒前
冷静的高烽完成签到,获得积分10
4秒前
4秒前
葱饼完成签到 ,获得积分10
4秒前
凯凯发布了新的文献求助10
5秒前
英姑应助长言采纳,获得10
5秒前
wendy完成签到,获得积分10
6秒前
6秒前
迷人书蝶发布了新的文献求助10
6秒前
6秒前
6秒前
aka发布了新的文献求助20
7秒前
feng完成签到,获得积分10
8秒前
yanj520925发布了新的文献求助10
8秒前
8秒前
深情安青应助巫雍采纳,获得10
10秒前
月亮moon发布了新的文献求助10
10秒前
欣欣发布了新的文献求助20
10秒前
科研通AI6应助lulululi采纳,获得10
11秒前
11秒前
11秒前
sh0w发布了新的文献求助10
11秒前
春山发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616