清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction

元启发式 均方误差 抗压强度 随机森林 人工神经网络 岩体分类 计算机科学 算法 决定系数 支持向量机 相关系数 机器学习 岩土工程 统计 地质学 材料科学 数学 人工智能 复合材料
作者
Jingze Li,Chuanqi Li,Shaohe Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:131: 109729-109729 被引量:41
标识
DOI:10.1016/j.asoc.2022.109729
摘要

The uniaxial compressive strength (UCS) is one of the most important parameters for judging the mechanical behavior of rock mass in rock engineering design and excavation such as tunnels, subways, drilling, slope and mines stability. However, it is difficult to obtain UCS accurately and quickly in traditional experimental operations. Therefore, prediction of the UCS of rock is of high practical significance in reducing calculation time and improving the precision of results. In this investigation, estimation and prediction of the UCS obtained from various rock in the laboratory on the base of artificial intelligence algorithms and empirical approaches were carried out. A total of 226 rock samples were selected to generate a dataset including five individual parameters, Schmidt hardness rebound number (SHR), P- wave velocity ( V p ), point load strength (Is (50) ), porosity (n), and density (D). The artificial neural network (ANN), kernel based extreme learning machine (KELM), support vector regression (SVR), empirical equations and a hybrid model Slime Mould Algorithm-based random forest (SMA- RF) were developed to predict the UCS. Four performance indicators named the root mean square error (RMSE), the determination coefficient (R 2 ), the mean absolute error (MAE) and the variance accounted for (VAF) were utilized to evaluate the performance of all models in forecasting the UCS of rock. The results of performance comparison demonstrated that the SMA- RF model has the highest values of R 2 (train: 0.9907 and test: 0.9705) and VAF (train: 99.0713 % and test: 97.0753 %), the lowest values of RMSE (train: 4.1478 and test: 7.7824) and MAE (train: 3.0096 and test: 5.8532) among the other models. The research in this study provides an effective attempt to further improve the accuracy of UCS prediction. • Application of six emerging Metaheuristic Optimization Algorithms and RF model in predicting the uniaxial compressive strength (UCS) of rock. • A comprehensive dataset of 226 rock samples with five properties was generated on the base of the four published articles. • The TSO-RF represents the best performance in UCS prediction among all hybrid RF models and other AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻花阳给wwww的求助进行了留言
2秒前
13秒前
14秒前
yellowonion完成签到 ,获得积分10
16秒前
wanci应助科研通管家采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
上官靖完成签到 ,获得积分10
29秒前
29秒前
点点完成签到 ,获得积分10
35秒前
欢呼的茗茗完成签到 ,获得积分10
45秒前
51秒前
hhh2018687完成签到,获得积分10
59秒前
你好完成签到 ,获得积分0
1分钟前
雪白小丸子完成签到,获得积分10
1分钟前
陈小青完成签到 ,获得积分10
1分钟前
馆长举报默默洋葱求助涉嫌违规
1分钟前
1分钟前
噗噗完成签到 ,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
牛黄完成签到 ,获得积分10
1分钟前
波波完成签到 ,获得积分10
1分钟前
1分钟前
土拨鼠完成签到 ,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
1分钟前
fanssw完成签到 ,获得积分0
1分钟前
ccc2完成签到,获得积分10
2分钟前
行难路发布了新的文献求助10
2分钟前
coolplex完成签到 ,获得积分10
2分钟前
缺粥完成签到 ,获得积分10
2分钟前
2分钟前
赵济尧完成签到,获得积分10
2分钟前
赵济尧发布了新的文献求助10
2分钟前
manman完成签到 ,获得积分10
2分钟前
老迟的新瑶完成签到 ,获得积分10
2分钟前
麻花阳完成签到,获得积分10
2分钟前
浮游应助赵济尧采纳,获得10
2分钟前
xiaowuge完成签到 ,获得积分10
2分钟前
General完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597181
求助须知:如何正确求助?哪些是违规求助? 4008867
关于积分的说明 12409629
捐赠科研通 3688002
什么是DOI,文献DOI怎么找? 2032871
邀请新用户注册赠送积分活动 1066109
科研通“疑难数据库(出版商)”最低求助积分说明 951394