Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction

元启发式 均方误差 抗压强度 随机森林 人工神经网络 岩体分类 计算机科学 算法 决定系数 支持向量机 相关系数 机器学习 岩土工程 统计 地质学 材料科学 数学 人工智能 复合材料
作者
Jingze Li,Chuanqi Li,Shaohe Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:131: 109729-109729 被引量:41
标识
DOI:10.1016/j.asoc.2022.109729
摘要

The uniaxial compressive strength (UCS) is one of the most important parameters for judging the mechanical behavior of rock mass in rock engineering design and excavation such as tunnels, subways, drilling, slope and mines stability. However, it is difficult to obtain UCS accurately and quickly in traditional experimental operations. Therefore, prediction of the UCS of rock is of high practical significance in reducing calculation time and improving the precision of results. In this investigation, estimation and prediction of the UCS obtained from various rock in the laboratory on the base of artificial intelligence algorithms and empirical approaches were carried out. A total of 226 rock samples were selected to generate a dataset including five individual parameters, Schmidt hardness rebound number (SHR), P- wave velocity ( V p ), point load strength (Is (50) ), porosity (n), and density (D). The artificial neural network (ANN), kernel based extreme learning machine (KELM), support vector regression (SVR), empirical equations and a hybrid model Slime Mould Algorithm-based random forest (SMA- RF) were developed to predict the UCS. Four performance indicators named the root mean square error (RMSE), the determination coefficient (R 2 ), the mean absolute error (MAE) and the variance accounted for (VAF) were utilized to evaluate the performance of all models in forecasting the UCS of rock. The results of performance comparison demonstrated that the SMA- RF model has the highest values of R 2 (train: 0.9907 and test: 0.9705) and VAF (train: 99.0713 % and test: 97.0753 %), the lowest values of RMSE (train: 4.1478 and test: 7.7824) and MAE (train: 3.0096 and test: 5.8532) among the other models. The research in this study provides an effective attempt to further improve the accuracy of UCS prediction. • Application of six emerging Metaheuristic Optimization Algorithms and RF model in predicting the uniaxial compressive strength (UCS) of rock. • A comprehensive dataset of 226 rock samples with five properties was generated on the base of the four published articles. • The TSO-RF represents the best performance in UCS prediction among all hybrid RF models and other AI models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
zhangpeipei完成签到,获得积分10
6秒前
欧阳完成签到,获得积分10
6秒前
股价发布了新的文献求助10
9秒前
玩命做研究完成签到 ,获得积分10
16秒前
19秒前
路漫漫其修远兮完成签到 ,获得积分10
21秒前
22秒前
123456完成签到,获得积分10
29秒前
123456发布了新的文献求助10
33秒前
清脆愫完成签到 ,获得积分10
43秒前
45秒前
Onetwothree完成签到 ,获得积分10
47秒前
左丘映易完成签到,获得积分0
56秒前
XU博士完成签到,获得积分10
58秒前
林药师完成签到,获得积分10
59秒前
逢场作戱__完成签到 ,获得积分10
59秒前
想睡觉的小笼包完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
研友_ZGR70n完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助股价采纳,获得10
1分钟前
desperado完成签到 ,获得积分10
1分钟前
伊笙完成签到 ,获得积分10
1分钟前
crown发布了新的文献求助10
1分钟前
Helu完成签到 ,获得积分10
2分钟前
默11完成签到 ,获得积分10
2分钟前
jun完成签到,获得积分10
2分钟前
《子非鱼》完成签到,获得积分10
2分钟前
DGYT7786完成签到 ,获得积分10
2分钟前
2分钟前
墨墨完成签到 ,获得积分10
2分钟前
2分钟前
liaomr发布了新的文献求助10
2分钟前
畅快的念烟完成签到,获得积分10
2分钟前
义气的硬币完成签到,获得积分10
2分钟前
森森完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245466
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247