Predicting pathological highly invasive lung cancer from preoperative [18F]FDG PET/CT with multiple machine learning models

医学 肺癌 正电子发射断层摄影术 核医学 放射科 接收机工作特性 布里氏评分 人工智能 病理 内科学 计算机科学
作者
Yuki Onozato,Takekazu Iwata,Yasufumi Uematsu,Daiki Shimizu,Takayoshi Yamamoto,Yukiko Matsui,Kazuyuki Ogawa,Junpei Kuyama,Yuichi Sakairi,Eiryo Kawakami,Toshihiko Iizasa,Ichiro Yoshino
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:50 (3): 715-726 被引量:22
标识
DOI:10.1007/s00259-022-06038-7
摘要

The efficacy of sublobar resection of primary lung cancer have been proven in recent years. However, sublobar resection for highly invasive lung cancer increases local recurrence. We developed and validated multiple machine learning models predicting pathological invasiveness of lung cancer based on preoperative [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) radiomic features.Overall, 873 patients who underwent lobectomy or segmentectomy for primary lung cancer were enrolled. Radiomics features were extracted from preoperative PET/CT images with the PyRadiomics package. Seven machine learning models and an ensemble of all models (ENS) were evaluated after 100 iterations. In addition, the probability of highly invasive lung cancer was calculated in a nested cross-validation to assess the calibration plot and clinical usefulness and to compare to consolidation tumour ratio (CTR) on CT images, one of the generally used diagnostic criteria.In the training set, when PET and CT features were combined, all models achieved an area under the curve (AUC) of ≥ 0.880. In the test set, ENS showed the highest mean AUC of 0.880 and smallest standard deviation of 0.0165, and when the cutoff was 0.5, accuracy of 0.804, F1 of 0.851, precision of 0.821, and recall of 0.885. In the nested cross-validation, the AUC of 0.882 (95% CI: 0.860-0.905) showed a high discriminative ability, and the calibration plot indicated consistency with a Brier score of 0.131. A decision curve analysis showed that the ENS was valid with a threshold probability ranging from 3 to 98%. Accuracy showed an improvement of more than 8% over the CTR.The machine learning model based on preoperative [18F]FDG PET/CT images was able to predict pathological highly invasive lung cancer with high discriminative ability and stability. The calibration plot showed good consistency, suggesting its usefulness in quantitative risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
5秒前
5秒前
chen发布了新的文献求助10
6秒前
6秒前
外向的书包完成签到,获得积分10
9秒前
直率听云发布了新的文献求助10
9秒前
10秒前
轻松凡英完成签到,获得积分10
10秒前
VERY发布了新的文献求助10
11秒前
无聊的大白菜完成签到 ,获得积分10
12秒前
12秒前
慕青应助Bread采纳,获得10
12秒前
xk9e给tlight1740的求助进行了留言
15秒前
直率听云完成签到,获得积分10
15秒前
木子乐妍完成签到,获得积分20
15秒前
15秒前
15秒前
17秒前
小鲸鱼发布了新的文献求助10
18秒前
Mr_Chen发布了新的文献求助10
18秒前
18秒前
19秒前
灵巧的翠桃完成签到,获得积分10
19秒前
能干可兰完成签到,获得积分10
19秒前
赵慧关注了科研通微信公众号
19秒前
谦让友绿发布了新的文献求助10
20秒前
20秒前
温暖涫完成签到 ,获得积分10
21秒前
22秒前
炸鸡叔发布了新的文献求助10
23秒前
桐桐应助打地鼠工人采纳,获得10
23秒前
潇飞天下发布了新的文献求助10
24秒前
24秒前
不空是空完成签到,获得积分0
24秒前
强强哥完成签到,获得积分10
24秒前
852应助一个小胖子采纳,获得10
27秒前
云铱梦令完成签到,获得积分10
28秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530