Predicting pathological highly invasive lung cancer from preoperative [18F]FDG PET/CT with multiple machine learning models

医学 肺癌 正电子发射断层摄影术 核医学 放射科 接收机工作特性 布里氏评分 人工智能 病理 内科学 计算机科学
作者
Yuki Onozato,Takekazu Iwata,Yasufumi Uematsu,Daiki Shimizu,Takayoshi Yamamoto,Yukiko Matsui,Kazuyuki Ogawa,Junpei Kuyama,Yuichi Sakairi,Eiryo Kawakami,Toshihiko Iizasa,Ichiro Yoshino
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:50 (3): 715-726 被引量:22
标识
DOI:10.1007/s00259-022-06038-7
摘要

The efficacy of sublobar resection of primary lung cancer have been proven in recent years. However, sublobar resection for highly invasive lung cancer increases local recurrence. We developed and validated multiple machine learning models predicting pathological invasiveness of lung cancer based on preoperative [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) radiomic features.Overall, 873 patients who underwent lobectomy or segmentectomy for primary lung cancer were enrolled. Radiomics features were extracted from preoperative PET/CT images with the PyRadiomics package. Seven machine learning models and an ensemble of all models (ENS) were evaluated after 100 iterations. In addition, the probability of highly invasive lung cancer was calculated in a nested cross-validation to assess the calibration plot and clinical usefulness and to compare to consolidation tumour ratio (CTR) on CT images, one of the generally used diagnostic criteria.In the training set, when PET and CT features were combined, all models achieved an area under the curve (AUC) of ≥ 0.880. In the test set, ENS showed the highest mean AUC of 0.880 and smallest standard deviation of 0.0165, and when the cutoff was 0.5, accuracy of 0.804, F1 of 0.851, precision of 0.821, and recall of 0.885. In the nested cross-validation, the AUC of 0.882 (95% CI: 0.860-0.905) showed a high discriminative ability, and the calibration plot indicated consistency with a Brier score of 0.131. A decision curve analysis showed that the ENS was valid with a threshold probability ranging from 3 to 98%. Accuracy showed an improvement of more than 8% over the CTR.The machine learning model based on preoperative [18F]FDG PET/CT images was able to predict pathological highly invasive lung cancer with high discriminative ability and stability. The calibration plot showed good consistency, suggesting its usefulness in quantitative risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lamed发布了新的文献求助10
1秒前
2秒前
gg发布了新的文献求助10
3秒前
寻悦完成签到,获得积分10
4秒前
Beebee24完成签到,获得积分10
5秒前
QQ完成签到,获得积分10
6秒前
羞涩的渊思完成签到 ,获得积分10
6秒前
wxx发布了新的文献求助10
7秒前
xjy完成签到,获得积分10
7秒前
SYLH应助华青ww采纳,获得10
11秒前
充电宝应助执念采纳,获得10
11秒前
13秒前
酷波er应助awedfa采纳,获得10
13秒前
14秒前
直率小霜发布了新的文献求助10
15秒前
15秒前
Lamed完成签到,获得积分10
16秒前
寻悦发布了新的文献求助10
16秒前
Akim应助十六采纳,获得10
16秒前
17秒前
17秒前
干净的夜蓉完成签到,获得积分10
17秒前
gg完成签到,获得积分10
18秒前
小明同学发布了新的文献求助10
18秒前
天阳完成签到,获得积分10
19秒前
yznfly应助pride采纳,获得30
20秒前
涨秋池发布了新的文献求助10
20秒前
多情青螃蟹完成签到,获得积分10
20秒前
AnJaShua发布了新的文献求助10
22秒前
22秒前
怡宝1223完成签到,获得积分10
23秒前
23秒前
如此完成签到,获得积分10
23秒前
大个应助dnnnsns采纳,获得30
25秒前
天天快乐应助念姬采纳,获得10
25秒前
25秒前
执念发布了新的文献求助10
28秒前
贼拉瘦的美神完成签到,获得积分10
29秒前
千万雷同发布了新的文献求助10
30秒前
淡淡夕阳发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403