Transformer-based hierarchical latent space VAE for interpretable remaining useful life prediction

预言 人工智能 计算机科学 数据挖掘 特征学习 代表(政治) 潜变量 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Tao Jing,Pai Zheng,Liqiao Xia,Tianyuan Liu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:54: 101781-101781 被引量:36
标识
DOI:10.1016/j.aei.2022.101781
摘要

Data-driven prediction of remaining useful life (RUL) has emerged as one of the most sought-after research in prognostics and health management (PHM). Nevertheless, most RUL prediction methods based on deep learning are black-box models that lack a visual interpretation to understand the RUL degradation process. To remedy the deficiency, we propose an intrinsically interpretable RUL prediction method based on three main modules: a temporal fusion separable convolutional network (TF-SCN), a hierarchical latent space variational auto-encoder (HLS-VAE), and a regressor. TF-SCN is used to extract the local feature information of the temporal signal. HLS-VAE is based on a transformer backbone that mines long-term temporal dependencies and compresses features into a hierarchical latent space. To enhance the streaming representation of the latent space, the temporal degradation information, i.e., health indicators (HI), is incorporated into the latent space in the form of inductive bias by using intermediate latent variables. The latent space can be used as a visual representation with self-interpretation to evaluate RUL degradation patterns visually. Experiments based on turbine engines show that the proposed approach achieves the same high-quality RUL prediction as black-box models while providing a latent space in which degradation rate can be captured to provide the interpretable evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文瑶琪完成签到,获得积分10
1秒前
Quhang发布了新的文献求助10
1秒前
top发布了新的文献求助10
2秒前
2秒前
2秒前
Sebastian完成签到,获得积分10
2秒前
浩二完成签到,获得积分10
2秒前
77发布了新的文献求助10
3秒前
3秒前
3秒前
清脆的傲旋完成签到,获得积分10
3秒前
小送完成签到,获得积分10
4秒前
hejilianglove发布了新的文献求助10
4秒前
温暖静柏完成签到,获得积分20
4秒前
4秒前
蔡徐坤完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
李爱国应助金锐采纳,获得10
6秒前
领导范儿应助繁荣的觅儿采纳,获得10
6秒前
自然的峰单关注了科研通微信公众号
6秒前
浮游应助飘逸的太阳采纳,获得10
6秒前
7秒前
枕安完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
ziyanga发布了新的文献求助10
7秒前
刘大能完成签到,获得积分10
8秒前
zy完成签到,获得积分10
8秒前
乐乐应助牧野牧采纳,获得10
8秒前
8秒前
Stella应助好运莲莲莲采纳,获得10
9秒前
丘比特应助Ccccc采纳,获得10
9秒前
斯文飞雪发布了新的文献求助10
9秒前
科目三应助陶醉眼睛采纳,获得10
9秒前
缓慢的高山应助方宇典采纳,获得10
9秒前
文6发布了新的文献求助10
10秒前
genomed完成签到,获得积分0
11秒前
11秒前
Sunshine发布了新的文献求助10
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671