亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine-grained image classification of microscopic insect pest species: Western Flower thrips and Plague thrips

蓟马 有害生物分析 背景(考古学) 鉴定(生物学) 生物 病虫害防治 农业害虫 病虫害综合治理 昆虫 生态学 农学 植物 古生物学 农业科学
作者
Don Chathurika Amarathunga,Malika Nisal Ratnayake,John Grundy,Alan Dorin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:203: 107462-107462 被引量:13
标识
DOI:10.1016/j.compag.2022.107462
摘要

Accurate identification of insect pests is essential in crop management as they are one of the primary causes of yield losses. However, differences between insect species demand different pest control strategies. Hence, research on new technology for fine-grained classification of insect pests is potentially important. Morphologically similar microscopic pest species classification has received little attention in the literature, and is targeted by this study as a means to address the need for agricultural pest management. We propose a novel computational method for deep learning-based, fine-grained classification of microscopic insects using the Vision Transform (ViT) architecture. This architecture employs an attention mechanism motivated by domain knowledge. The proposed approach consists of two main modules, a Data Preprocessing Module to segment relevant insect features and split the insect into body segments to inform identification, and a Domain Knowledge-Driven Stacked Model based on ViT to generate the prediction from each body segment and to fuse predictions for each segment into an accurate species-level classification. We tested the approach using an image dataset of two economically devastating thrip species – Western Flower thrips (Frankliniella occidentalis) and Plague thrips (Thrips imaginis). These insects are small (∼1mm), exhibit minute inter-species differences, and require different pest control strategies. We compared our model with the original ViT model, RestNet101, and RestNet50. Experimental results achieve an F1-score of 0.978, a 3.27% improvement over the baselines. This is important in the horticultural context given the yield losses that these pest insects are known to cause if their populations remain incorrectly quantified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江彪发布了新的文献求助10
4秒前
江彪完成签到,获得积分10
17秒前
Marciu33完成签到,获得积分10
23秒前
健壮的花瓣完成签到 ,获得积分10
37秒前
Rinsana完成签到,获得积分10
39秒前
39秒前
在水一方应助科研通管家采纳,获得30
40秒前
小二郎应助科研通管家采纳,获得10
40秒前
43秒前
橓顺发布了新的文献求助10
45秒前
小王发布了新的文献求助10
50秒前
luca应助橓顺采纳,获得10
53秒前
和谐的忻完成签到,获得积分10
55秒前
58秒前
和谐的忻发布了新的文献求助20
58秒前
WerWu完成签到,获得积分10
1分钟前
1分钟前
拂晓驳回了慕青应助
1分钟前
开朗若雁发布了新的文献求助10
1分钟前
L_MD完成签到,获得积分10
1分钟前
1分钟前
1分钟前
拂晓发布了新的文献求助20
1分钟前
1分钟前
充实余生发布了新的文献求助10
1分钟前
sytbb发布了新的文献求助10
1分钟前
1分钟前
YANG发布了新的文献求助10
1分钟前
Owen应助拂晓采纳,获得20
1分钟前
sytbb完成签到,获得积分10
1分钟前
星辰大海应助YANG采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得20
2分钟前
2分钟前
酷酷涫完成签到 ,获得积分0
2分钟前
贪玩航空发布了新的文献求助10
2分钟前
丘比特应助dd大大采纳,获得10
3分钟前
贪玩航空完成签到,获得积分20
3分钟前
3分钟前
123468789521发布了新的文献求助30
3分钟前
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
How to Mind Map: The Ultimate Thinking Tool That Will Change Your Life 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700099
求助须知:如何正确求助?哪些是违规求助? 3250526
关于积分的说明 9869392
捐赠科研通 2962357
什么是DOI,文献DOI怎么找? 1624605
邀请新用户注册赠送积分活动 769447
科研通“疑难数据库(出版商)”最低求助积分说明 742247