亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Impact of gas diffusion layer and microporous layer degradation on effective transport properties

微型多孔材料 微观结构 质子交换膜燃料电池 电解质 气体扩散 格子Boltzmann方法 化学工程 化学 材料科学 扩散 毛细管作用 复合材料 燃料电池 热力学 电极 物理化学 工程类 物理 生物化学
作者
Patrick Sarkezi-Selsky,Henrike Schmies,Arnulf Latz,Thomas Jahnke
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:556: 232415-232415 被引量:7
标识
DOI:10.1016/j.jpowsour.2022.232415
摘要

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) represent a promising technology for clean drivetrain solutions, in particular for heavy-duty applications. However, lifetime requirements demand high durability of each cell component. In this work, transport of liquid water through pristine and degraded gas diffusion layers (GDL) was simulated with a 3D Color-Gradient Lattice Boltzmann model. The GDL microstructure was reconstructed from high-resolution X-ray micro-computed tomography (μ-CT) of an impregnated Freudenberg H14. The effect of a microporous layer (MPL) was considered by reconstruction of an impregnated and MPL-coated H14. Aged microstructures were generated artificially, assuming loss of polytetrafluoroethylene (PTFE) within the GDL and increase of MPL macroporosity as main degradation mechanisms. Liquid water transport within aged microstructures was simulated by imposing a liquid phase flow rate until breakthrough was reached. Subsequently, the GDL microstructures were analyzed for their breakthrough characteristics by means of saturation and effective gas transport properties. When the MPL was pristine, no distinct GDL degradation effect was observable, this was attributed to the MPL dominating capillary transport. MPL aging, however, led to increased saturations and thus to a deterioration of the effective gas transport. With a partially degraded MPL, aging of the GDL then appeared to affect the breakthrough characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
31秒前
拿起蜡笔小新完成签到 ,获得积分10
35秒前
49秒前
52秒前
56秒前
lazysheep关注了科研通微信公众号
56秒前
58秒前
59秒前
1分钟前
闪闪的梦柏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
完美世界应助gbb采纳,获得10
1分钟前
1分钟前
树洞里的刺猬完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Cherish发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
执着的怜寒完成签到 ,获得积分10
2分钟前
情怀应助东京今夜下雪采纳,获得10
2分钟前
2分钟前
ANG完成签到 ,获得积分10
2分钟前
2分钟前
直率三问完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
jim完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
以七完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782232
关于积分的说明 15052807
捐赠科研通 4809729
什么是DOI,文献DOI怎么找? 2572530
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487549