亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Impact of gas diffusion layer and microporous layer degradation on effective transport properties

微型多孔材料 微观结构 质子交换膜燃料电池 电解质 气体扩散 格子Boltzmann方法 化学工程 化学 材料科学 扩散 毛细管作用 复合材料 燃料电池 热力学 电极 物理化学 工程类 物理 生物化学
作者
Patrick Sarkezi-Selsky,Henrike Schmies,Arnulf Latz,Thomas Jahnke
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:556: 232415-232415 被引量:7
标识
DOI:10.1016/j.jpowsour.2022.232415
摘要

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) represent a promising technology for clean drivetrain solutions, in particular for heavy-duty applications. However, lifetime requirements demand high durability of each cell component. In this work, transport of liquid water through pristine and degraded gas diffusion layers (GDL) was simulated with a 3D Color-Gradient Lattice Boltzmann model. The GDL microstructure was reconstructed from high-resolution X-ray micro-computed tomography (μ-CT) of an impregnated Freudenberg H14. The effect of a microporous layer (MPL) was considered by reconstruction of an impregnated and MPL-coated H14. Aged microstructures were generated artificially, assuming loss of polytetrafluoroethylene (PTFE) within the GDL and increase of MPL macroporosity as main degradation mechanisms. Liquid water transport within aged microstructures was simulated by imposing a liquid phase flow rate until breakthrough was reached. Subsequently, the GDL microstructures were analyzed for their breakthrough characteristics by means of saturation and effective gas transport properties. When the MPL was pristine, no distinct GDL degradation effect was observable, this was attributed to the MPL dominating capillary transport. MPL aging, however, led to increased saturations and thus to a deterioration of the effective gas transport. With a partially degraded MPL, aging of the GDL then appeared to affect the breakthrough characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助安静海露采纳,获得10
5秒前
11秒前
13秒前
moika发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
安静海露发布了新的文献求助10
18秒前
如意竺完成签到,获得积分0
28秒前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
红火完成签到 ,获得积分10
1分钟前
三三完成签到,获得积分10
1分钟前
三心草完成签到 ,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科目三应助moika采纳,获得10
3分钟前
444发布了新的文献求助10
3分钟前
打打应助安静海露采纳,获得10
4分钟前
科研通AI6应助444采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
安静海露发布了新的文献求助10
4分钟前
李健应助好人采纳,获得10
4分钟前
安静海露完成签到,获得积分10
4分钟前
444完成签到,获得积分20
4分钟前
5分钟前
好人发布了新的文献求助10
5分钟前
6分钟前
开心每一天完成签到 ,获得积分10
6分钟前
123发布了新的文献求助10
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772968
求助须知:如何正确求助?哪些是违规求助? 5604636
关于积分的说明 15430227
捐赠科研通 4905689
什么是DOI,文献DOI怎么找? 2639648
邀请新用户注册赠送积分活动 1587551
关于科研通互助平台的介绍 1542496