The Application of Machine Learning Models Based on Leaf Spectral Reflectance for Estimating the Nitrogen Nutrient Index in Maize

氮气 偏最小二乘回归 干物质 栽培 成熟 均方误差 决定系数 数学 支持向量机 营养物 生物量(生态学) 农学 化学 人工智能 统计 食品科学 计算机科学 生物 有机化学
作者
Bin Chen,Xianju Lu,Shan Yu,Siyi Gu,Guanmin Huang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1839-1839 被引量:3
标识
DOI:10.3390/agriculture12111839
摘要

Non-destructive acquisition and accurate real-time assessment of nitrogen (N) nutritional status are crucial for nitrogen management and yield prediction in maize production. The objective of this study was to develop a method for estimating the nitrogen nutrient index (NNI) of maize using in situ leaf spectroscopy. Field trials with six nitrogen fertilizer levels (0, 75, 150, 225, 300, and 375 kg N ha−1) were performed using eight summer maize cultivars. The leaf reflectance spectrum was acquired at different growth stages, with simultaneous measurements of leaf nitrogen content (LNC) and leaf dry matter (LDW). The competitive adaptive reweighted sampling (CARS) algorithm was used to screen the raw spectrum’s effective bands related to the NNI during the maize critical growth period (from the 12th fully expanded leaf stage to the milk ripening stage). Three machine learning methods—partial least squares (PLS), artificial neural networks (ANN), and support vector machines (SVM)—were used to validate the NNI estimation model. These methods indicated that the NNI first increased and then decreased (from the 12th fully expanded leaf stage to the milk ripening stage) and was positively correlated with nitrogen application. The results showed that combining effective bands and PLS (CARS-PLS) achieved the best model for NNI estimation, which yielded the highest coefficient of determination (R2val), 0.925, and the lowest root mean square error (RMSEval), 0.068, followed by the CARS-SVM model (R2val, 0.895; RMSEval, 0.081), and the CARS-ANN model (R2val, 0.814; RMSEval, 0.108), which performed the worst. The CARS-PLS model was used to successfully predict the variation in the NNI among cultivars and different growth stages. The estimated R2 of eight cultivars by the NNI was between 0.86 and 0.97; the estimated R2 of the NNI at different growth stages was between 0.92 and 0.94. The overall results indicated that the CARS-PLS allows for rapid, accurate, and non-destructive estimation of the NNI during maize growth, providing an efficient tool for accurately monitoring nitrogen nutrition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橘酥酥呀完成签到,获得积分20
1秒前
1秒前
Ava应助微眠采纳,获得10
1秒前
向浩完成签到,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
CCY完成签到,获得积分10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
long应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Wind应助小鲤鱼采纳,获得20
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
Lyg发布了新的文献求助10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
淡定从凝完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
wnche完成签到,获得积分10
4秒前
月光族完成签到,获得积分10
4秒前
小小完成签到,获得积分20
4秒前
4秒前
Oil发布了新的文献求助10
4秒前
领导范儿应助向阳采纳,获得10
4秒前
1111完成签到,获得积分10
5秒前
6秒前
阿治发布了新的文献求助10
7秒前
SRY完成签到,获得积分10
7秒前
可爱的从寒完成签到,获得积分10
8秒前
8秒前
Hello应助burger采纳,获得10
8秒前
1111发布了新的文献求助20
9秒前
后夜完成签到,获得积分10
9秒前
橙熟完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167