The Application of Machine Learning Models Based on Leaf Spectral Reflectance for Estimating the Nitrogen Nutrient Index in Maize

氮气 偏最小二乘回归 干物质 栽培 成熟 均方误差 决定系数 数学 支持向量机 营养物 生物量(生态学) 农学 化学 人工智能 统计 食品科学 计算机科学 生物 有机化学
作者
Bin Chen,Xianju Lu,Shan Yu,Siyi Gu,Guanmin Huang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1839-1839 被引量:3
标识
DOI:10.3390/agriculture12111839
摘要

Non-destructive acquisition and accurate real-time assessment of nitrogen (N) nutritional status are crucial for nitrogen management and yield prediction in maize production. The objective of this study was to develop a method for estimating the nitrogen nutrient index (NNI) of maize using in situ leaf spectroscopy. Field trials with six nitrogen fertilizer levels (0, 75, 150, 225, 300, and 375 kg N ha−1) were performed using eight summer maize cultivars. The leaf reflectance spectrum was acquired at different growth stages, with simultaneous measurements of leaf nitrogen content (LNC) and leaf dry matter (LDW). The competitive adaptive reweighted sampling (CARS) algorithm was used to screen the raw spectrum’s effective bands related to the NNI during the maize critical growth period (from the 12th fully expanded leaf stage to the milk ripening stage). Three machine learning methods—partial least squares (PLS), artificial neural networks (ANN), and support vector machines (SVM)—were used to validate the NNI estimation model. These methods indicated that the NNI first increased and then decreased (from the 12th fully expanded leaf stage to the milk ripening stage) and was positively correlated with nitrogen application. The results showed that combining effective bands and PLS (CARS-PLS) achieved the best model for NNI estimation, which yielded the highest coefficient of determination (R2val), 0.925, and the lowest root mean square error (RMSEval), 0.068, followed by the CARS-SVM model (R2val, 0.895; RMSEval, 0.081), and the CARS-ANN model (R2val, 0.814; RMSEval, 0.108), which performed the worst. The CARS-PLS model was used to successfully predict the variation in the NNI among cultivars and different growth stages. The estimated R2 of eight cultivars by the NNI was between 0.86 and 0.97; the estimated R2 of the NNI at different growth stages was between 0.92 and 0.94. The overall results indicated that the CARS-PLS allows for rapid, accurate, and non-destructive estimation of the NNI during maize growth, providing an efficient tool for accurately monitoring nitrogen nutrition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自信雨安发布了新的文献求助10
1秒前
1秒前
tpl完成签到,获得积分10
2秒前
ad完成签到,获得积分10
2秒前
sci123完成签到,获得积分10
3秒前
4秒前
4秒前
失眠的蓝完成签到,获得积分10
4秒前
科目三应助maxiaochen采纳,获得10
5秒前
十七完成签到,获得积分10
5秒前
jj发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
8秒前
9秒前
chx123完成签到,获得积分10
9秒前
索多倍发布了新的文献求助10
10秒前
巅峰囚冰完成签到,获得积分10
10秒前
知许解夏应助荔枝吖采纳,获得10
11秒前
北璃发布了新的文献求助10
12秒前
17秒前
索多倍完成签到,获得积分10
18秒前
可爱的函函应助北璃采纳,获得10
18秒前
医大好学生完成签到,获得积分10
19秒前
20秒前
田様应助活力惜寒采纳,获得30
21秒前
嘿嘿完成签到 ,获得积分10
21秒前
领导范儿应助易天樂采纳,获得10
21秒前
22秒前
22秒前
22秒前
深情安青应助Han采纳,获得10
24秒前
小二郎应助过江春雷采纳,获得10
24秒前
sanben完成签到,获得积分10
25秒前
小乐子发布了新的文献求助10
25秒前
puzhongjiMiQ发布了新的文献求助10
26秒前
COCO发布了新的文献求助10
26秒前
小猪佩奇完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868