The Application of Machine Learning Models Based on Leaf Spectral Reflectance for Estimating the Nitrogen Nutrient Index in Maize

氮气 偏最小二乘回归 干物质 栽培 成熟 均方误差 决定系数 数学 支持向量机 营养物 生物量(生态学) 农学 化学 人工智能 统计 食品科学 计算机科学 生物 有机化学
作者
Bin Chen,Xianju Lu,Shan Yu,Siyi Gu,Guanmin Huang,Xinyu Guo,Chunjiang Zhao
出处
期刊:Agriculture [MDPI AG]
卷期号:12 (11): 1839-1839 被引量:3
标识
DOI:10.3390/agriculture12111839
摘要

Non-destructive acquisition and accurate real-time assessment of nitrogen (N) nutritional status are crucial for nitrogen management and yield prediction in maize production. The objective of this study was to develop a method for estimating the nitrogen nutrient index (NNI) of maize using in situ leaf spectroscopy. Field trials with six nitrogen fertilizer levels (0, 75, 150, 225, 300, and 375 kg N ha−1) were performed using eight summer maize cultivars. The leaf reflectance spectrum was acquired at different growth stages, with simultaneous measurements of leaf nitrogen content (LNC) and leaf dry matter (LDW). The competitive adaptive reweighted sampling (CARS) algorithm was used to screen the raw spectrum’s effective bands related to the NNI during the maize critical growth period (from the 12th fully expanded leaf stage to the milk ripening stage). Three machine learning methods—partial least squares (PLS), artificial neural networks (ANN), and support vector machines (SVM)—were used to validate the NNI estimation model. These methods indicated that the NNI first increased and then decreased (from the 12th fully expanded leaf stage to the milk ripening stage) and was positively correlated with nitrogen application. The results showed that combining effective bands and PLS (CARS-PLS) achieved the best model for NNI estimation, which yielded the highest coefficient of determination (R2val), 0.925, and the lowest root mean square error (RMSEval), 0.068, followed by the CARS-SVM model (R2val, 0.895; RMSEval, 0.081), and the CARS-ANN model (R2val, 0.814; RMSEval, 0.108), which performed the worst. The CARS-PLS model was used to successfully predict the variation in the NNI among cultivars and different growth stages. The estimated R2 of eight cultivars by the NNI was between 0.86 and 0.97; the estimated R2 of the NNI at different growth stages was between 0.92 and 0.94. The overall results indicated that the CARS-PLS allows for rapid, accurate, and non-destructive estimation of the NNI during maize growth, providing an efficient tool for accurately monitoring nitrogen nutrition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chemlixy发布了新的文献求助10
1秒前
几酌应助xixi采纳,获得10
1秒前
hyx7735完成签到,获得积分20
2秒前
Ry发布了新的文献求助10
3秒前
future完成签到 ,获得积分10
4秒前
theonePTC发布了新的文献求助10
5秒前
5秒前
内向耷发布了新的文献求助30
5秒前
6秒前
小蘑菇应助DW采纳,获得10
7秒前
你可真下饭完成签到,获得积分10
7秒前
8秒前
领导范儿应助hyx7735采纳,获得10
9秒前
9秒前
拉宝了发布了新的文献求助10
10秒前
10秒前
11秒前
Nature完成签到,获得积分10
11秒前
zzzzzz发布了新的文献求助30
12秒前
充电宝应助makoto1984采纳,获得10
12秒前
可ke完成签到 ,获得积分10
12秒前
科研通AI2S应助ne采纳,获得10
12秒前
花Cheung完成签到,获得积分10
13秒前
13秒前
liyuxuan发布了新的文献求助10
14秒前
黎黎发布了新的文献求助10
14秒前
典雅不凡发布了新的文献求助20
14秒前
oncoma完成签到 ,获得积分10
15秒前
呆萌背包发布了新的文献求助10
16秒前
默默发布了新的文献求助10
16秒前
16秒前
Emma发布了新的文献求助10
17秒前
shinysparrow应助chen采纳,获得100
17秒前
李健应助超级白昼采纳,获得30
18秒前
郝宝真发布了新的文献求助10
20秒前
666完成签到,获得积分10
20秒前
香蕉觅云应助Ry采纳,获得10
20秒前
惜曦发布了新的文献求助10
20秒前
彭于晏应助科研通管家采纳,获得10
23秒前
Murphy应助科研通管家采纳,获得10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175