Directional recrystallization of an additively manufactured Ni-base superalloy

材料科学 高温合金 再结晶(地质) 索尔夫斯 冶金 粒度 动态再结晶 温度梯度 蠕动 晶界 复合材料 热加工 微观结构 古生物学 物理 生物 量子力学
作者
Dominic Peachey,Christopher P. Carter,Andres Garcia-Jimenez,Anugrahaprada Mukundan,Donovan N. Leonard,Marie‐Agathe Charpagne,Zachary C. Cordero
出处
期刊:Additive manufacturing [Elsevier]
卷期号:60: 103198-103198 被引量:22
标识
DOI:10.1016/j.addma.2022.103198
摘要

Metal additive manufacturing processes can create intricate components that are difficult to form with conventional processing methods; however, the as-printed materials often have fine grain structures that result in poor high-temperature creep properties, especially compared to directionally solidified materials. Here, we address this limitation in an exemplary additively manufactured Ni-base superalloy, AM IN738LC, by converting the fine as-printed grain structure to a coarse columnar one via directional recrystallization. The directional recrystallization behaviors of AM IN738LC were characterized through a parameter study in which the peak temperature and draw rate were each independently varied. Recrystallization began when the peak temperature was higher than the γ′ solvus of 1183 °C. Varying the draw rate from 1 to 100 mm/hr while maintaining a fixed peak temperature of 1235 °C and a thermal gradient of order 105 °C/m ahead of the hot zone showed that a draw rate of 2.5 mm/hr maximized the grain size, giving a mean longitudinal grain size of 650 µm. Specimens processed under these optimal conditions also inherited the 〈100〉 fiber texture of the as-printed material. Close inspection of a quenched specimen revealed Zener pinning of the longitudinal grain boundaries by MC carbides and a discrete primary recrystallization front whose position followed the γ′ solvus isotherm. The present results demonstrate for the first time how directional recrystallization of additively manufactured Ni-base superalloys can achieve large columnar grains, manipulate crystallographic texture to minimize thermal stresses expected in service, and functionally grade the grain structure to selectively enhance fatigue or creep performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
applelpypies完成签到 ,获得积分10
刚刚
内向一笑完成签到 ,获得积分10
1秒前
ll完成签到,获得积分20
1秒前
1秒前
444完成签到,获得积分10
2秒前
gry完成签到,获得积分10
4秒前
4秒前
科研通AI5应助夏夏采纳,获得10
5秒前
LU完成签到 ,获得积分10
5秒前
zky0216发布了新的文献求助10
6秒前
Kin_L完成签到,获得积分10
6秒前
7秒前
一一发布了新的文献求助10
7秒前
丙队长发布了新的文献求助10
8秒前
舒适行天完成签到,获得积分10
8秒前
善学以致用应助wuyudelan采纳,获得10
10秒前
zky0216完成签到,获得积分10
10秒前
11秒前
毛豆爸爸发布了新的文献求助10
13秒前
坦率的丹烟完成签到 ,获得积分10
13秒前
风趣的梦露完成签到 ,获得积分10
13秒前
认真的南珍完成签到 ,获得积分20
14秒前
15秒前
16秒前
林森发布了新的文献求助10
18秒前
18秒前
那里有颗星星完成签到,获得积分10
18秒前
丙队长完成签到,获得积分10
19秒前
酷炫蚂蚁完成签到,获得积分20
20秒前
20秒前
科研通AI5应助叶子采纳,获得10
20秒前
感激不尽完成签到,获得积分10
20秒前
wuyudelan完成签到,获得积分10
21秒前
zstyry9998完成签到,获得积分10
23秒前
RH发布了新的文献求助10
23秒前
冷傲迎梦发布了新的文献求助10
23秒前
25秒前
weiv完成签到,获得积分10
27秒前
Teslwang完成签到,获得积分10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824