Improve the efficiency of organic light-emitting diodes using a novel hole injection layer with triple-layer gradually doped structure

有机发光二极管 兴奋剂 材料科学 光电子学 二极管 图层(电子) X射线光电子能谱 载流子 电子迁移率 分析化学(期刊) 化学 纳米技术 核磁共振 物理 色谱法
作者
Weilin Huang,Mei‐Ling Tsai,Ting-Heng Wang,Sheng‐Yuan Chu,Po‐Ching Kao
出处
期刊:Organic Electronics [Elsevier]
卷期号:111: 106666-106666 被引量:3
标识
DOI:10.1016/j.orgel.2022.106666
摘要

In this study, we reported the fabrication of an organic light-emitting diodes (OLED) using the metal oxide Nb-doped ZnO (NZO) and the common hole transport layer of N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) to form a novel hole injection layer with gradually-doped triple-layer structure (HITL). The comparison between the stepwise doped double-layer and uniformly doped device showed that the HITL structure could effectively improve the current efficiency of the OLED device. The results of both current density-voltage measurement by hole-only device (HOD) and the UV photoelectron spectroscopy (UPS) confirmed that the highest occupied molecular orbital (HOMO) energy level could help to improve the hole injection performance. In addition, the non-destructive analysis method of capacitance-voltage was used to observe the movement of charge carriers during the operation of the device. The comparison study indicated that by the stepwise doped double-layer injection layer, the influence of the doping gradient on the carrier injection was confirmed, and a smaller doping gradient was found to show the better performance of carrier injection. Based on the results obtained from this study, the maximum luminance and current efficiency of OLED device with HITL was found to be enhanced by approximately 2.48 times and 32.6% respectively when compared with the device without hole injection layer. Various measurements carried out in this study showed that the HITL structure could effectively improve the characteristics of hole carriers, and thereby the better charge balance effect and a more stable current efficiency performance could be achieved by reducing the current efficiency roll-off effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘一安完成签到 ,获得积分10
刚刚
我的miemie完成签到,获得积分10
刚刚
最最最完成签到,获得积分20
刚刚
清爽雪枫完成签到,获得积分10
刚刚
本杰明发布了新的文献求助30
刚刚
杳鸢应助欢呼的棒棒糖采纳,获得10
1秒前
1秒前
1秒前
1秒前
YHX9910完成签到,获得积分10
1秒前
在水一方应助郑小七采纳,获得10
1秒前
玉崟发布了新的文献求助10
2秒前
2秒前
刘旭阳完成签到,获得积分10
2秒前
2秒前
2秒前
星星泡饭完成签到,获得积分10
3秒前
3秒前
3秒前
King16完成签到,获得积分10
3秒前
3秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
jmy完成签到,获得积分10
4秒前
Leif应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
积极的板栗完成签到 ,获得积分10
4秒前
咯咚完成签到 ,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759