Multi-target meridians classification based on the topological structure of anti-cancer phytochemicals using deep learning

人工智能 中医药 传统医学 医学 卷积神经网络 计算机科学 病理 替代医学
作者
Sheng Zhang,Xianwei Zhang,Jiayin Du,Wei Wang,Xitian Pi
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:319: 117244-117244 被引量:3
标识
DOI:10.1016/j.jep.2023.117244
摘要

Traditional Chinese medicine (TCM) meridian is the key theoretical guidance of prescription against tumor in clinical practice. However, there is no scientific and systematic verification of therapeutic action of herbs under meridians context. Several studies have determined the Chinese herbal medicine (CHM) phytochemicals for intrinsic attribute or meridians classification based on artificial intelligence (AI) tools. However, it is challenging to represent the complex molecular structures with large heterogeneity through the current technologies. In addition, the multiple correspondence between herbs and meridians has not been paid much attention. We aim to develop an AI framework to classify multi-target meridians through the topological structure of phytochemicals. A total of 354 anti-cancer herbs, their corresponding TCM meridians and 5471 ingredient compounds were collected from public databases of CancerHSP, ETCM, and Hit 2.0. The statistical analysis of herbal and compound datasets, clustering analysis of the associated cancers, and correlational analysis of meridian tropism were preliminary conducted. Then a deep learning (DL) hybrid model named GRMC consisting of graph convolutional network (GCN) and recurrent neural network (RNN) was employed to generate the meridian multi-label sequences based on molecular graph. The curing herbs against tumors have tight relationships to lung, liver, stomach, and spleen meridians. These herbs behave different properties in curing certain cancer. Certain cancer types have co-occurrence such as ovarian, bladder and cervical cancer. Compounds have multitarget meridians with characteristics of higher-order correlations. Compared with the other state-of-the-art algorithms on the datasets and previous methods dealing with conventional fixed fingerprints of herbal compounds, the proposed GRMC has superior overall performance on testing dataset with the one error of 0.183, hamming loss of 0.112, mean averaged accuracy (MAA) of 0.855, mean averaged precision (MAP) of 0.891, mean averaged recall (MAR) of 0.812, and mean averaged F1 score (MAF) of 0.849. The proposed method can predict multi-targeted meridians through neural graph features in herbal compounds and outperforms several comparison methods. It could provide a basis for understanding the molecular scientific evidence of TCM meridians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
C洛7完成签到,获得积分10
1秒前
阿尔忒弥斯完成签到,获得积分10
1秒前
阿卡宁完成签到,获得积分10
1秒前
Hello应助明天会更好采纳,获得10
1秒前
小欧医生完成签到,获得积分10
1秒前
1秒前
2秒前
虞鱼瑜发布了新的文献求助10
2秒前
fabulousthee完成签到,获得积分10
2秒前
哭泣的猕猴桃完成签到,获得积分10
2秒前
YDSL发布了新的文献求助10
3秒前
HIKING完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
qwe完成签到,获得积分10
6秒前
以乐完成签到 ,获得积分10
6秒前
6秒前
Diss发布了新的文献求助20
7秒前
7秒前
Aoopiy完成签到,获得积分10
8秒前
情怀应助周文采纳,获得10
8秒前
8秒前
100完成签到,获得积分10
8秒前
王淳发布了新的文献求助50
9秒前
帅哥完成签到,获得积分10
9秒前
要减肥的卷心菜完成签到,获得积分10
9秒前
研友_VZG7GZ应助Chenyan775199采纳,获得10
10秒前
zxvcbnm发布了新的文献求助10
10秒前
Aoopiy发布了新的文献求助10
11秒前
12秒前
LYQ完成签到,获得积分10
13秒前
George完成签到,获得积分10
13秒前
ming应助清秀笑晴采纳,获得10
13秒前
chemist007发布了新的文献求助10
13秒前
被动科研完成签到,获得积分10
14秒前
充电宝应助想发SCI采纳,获得10
14秒前
FashionBoy应助YELLOW采纳,获得10
15秒前
subass完成签到 ,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792