亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Speech emotion recognition using the novel PEmoNet (Parallel Emotion Network)

光谱图 计算机科学 最佳显著性理论 人工智能 特征(语言学) 语音识别 深度学习 任务(项目管理) 卷积神经网络 代表(政治) 多任务学习 特征学习 情绪分类 卷积(计算机科学) 模式识别(心理学) 人工神经网络 心理学 工程类 政治 心理治疗师 系统工程 法学 哲学 语言学 政治学
作者
Kishor Bhangale,Mohanaprasad Kothandaraman
出处
期刊:Applied Acoustics [Elsevier BV]
卷期号:212: 109613-109613 被引量:11
标识
DOI:10.1016/j.apacoust.2023.109613
摘要

Emotions are very crucial for humans for expressing perception and daily activities such as communication, learning, and decision-making. Human emotion recognition using machines is a very complex task. Recently deep learning techniques have been widely used to automate this task by providing machines with a huge learning capability. However, Speech emotion recognition (SER) is challenging due to language, regional, gender, age, and cultural variations. Most of the previous SER techniques have used only one type of feature representation to train deep learning algorithms, which limits the performance of SER. This paper presents a novel Parallel Emotion Network (PEmoNet) that includes Deep Convolution Neural Network (DCNN) with three parallel arms to address effective SER. The three parallel arms of the proposed PEmoNet accept the Multitaper Mel Frequency Spectrogram (MTMFS), Gammatonegram spectrogram (GS), and Constant Q-Transform Spectrogram (CQTS) as input to improve the feature distinctiveness of the emotion signal. The performance of the proposed SER scheme is evaluated on EMODB and RAVDESS datasets based on accuracy, recall, precision, and F1-score. The proposed technique shows 97.14% and 97.41% accuracy for the EMODB and RAVDESS datasets. It shows that the proposed PEmoNet with different spectral representation inputs helps improve the emotions' distinctiveness and outperforms the existing state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
一定能成功!完成签到,获得积分10
19秒前
25秒前
38秒前
43秒前
zzzsh发布了新的文献求助10
50秒前
52秒前
研友_X894JZ完成签到 ,获得积分10
57秒前
隐形曼青应助千堆雪claris采纳,获得10
1分钟前
1分钟前
脑洞疼应助要减肥的婷冉采纳,获得10
1分钟前
JamesPei应助jacs111采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
qiu发布了新的文献求助10
1分钟前
jacs111发布了新的文献求助10
1分钟前
茶叶蛋发布了新的文献求助10
1分钟前
1分钟前
1分钟前
qiu完成签到,获得积分10
1分钟前
千堆雪claris完成签到,获得积分10
1分钟前
拼搏萝发布了新的文献求助20
1分钟前
1分钟前
1分钟前
ding应助茶叶蛋采纳,获得30
1分钟前
1分钟前
玄之又玄完成签到,获得积分10
2分钟前
2分钟前
cuddly完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
茶叶蛋发布了新的文献求助30
2分钟前
美罗培南完成签到,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214