An Adaptive Peak Power Prediction Method for Power Lithium-Ion Batteries Considering Temperature and Aging Effects

电池(电) 荷电状态 锂离子电池 功率(物理) 计算机科学 控制理论(社会学) 扩展卡尔曼滤波器 电压 卡尔曼滤波器 工程类 电气工程 量子力学 物理 人工智能 控制(管理)
作者
Jilei Ye,Chao Wu,Changlong Ma,Zijie Yuan,Yilong Guo,Ruoyu Wang,Yuping Wu,Jinlei Sun,Lili Liu
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:11 (8): 2449-2449 被引量:2
标识
DOI:10.3390/pr11082449
摘要

The battery power state (SOP) is the basic indicator for the Battery management system (BMS) of the battery energy storage system (BESS) to formulate control strategies. Although there have been many studies on state estimation of lithium-ion batteries (LIBs), aging and temperature variation are seldom considered in peak power prediction during the whole life of the battery. To fill this gap, this paper aims to propose an adaptive peak power prediction method for power lithium-ion batteries considering temperature and aging is proposed. First, the Thevenin equivalent circuit model is used to jointly estimate the state of charge (SOC) and SOP of the lithium-ion power battery, and the variable forgetting factor recursive least squares (VFF-RLS) algorithm and extended Kalman filter (EKF) are utilized to identify the battery parameters online. Then, multiple constraint parameters including current, voltage, and SOC were derived, considering the dependence of the polarization resistance of the battery on the battery current. Finally, the verification experiment was carried out with LiFePO4 battery. The experimental results under FUDS operating conditions show that the maximum SOC estimation error is 1.94%. And the power prediction errors at 20%, 50%, and 70% SOC were 5.0%, 8.1% and 4.5%, respectively. Our further work will focus on the joint estimation of battery state to further improve the accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zho发布了新的文献求助10
1秒前
啊啊的发布了新的文献求助10
2秒前
哈哈哈发布了新的文献求助10
2秒前
2秒前
2秒前
lalala发布了新的文献求助10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
陌语完成签到,获得积分10
6秒前
6秒前
qq发布了新的文献求助10
6秒前
songyu完成签到,获得积分10
6秒前
iuuuu发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
9秒前
冷静无心发布了新的文献求助10
10秒前
万能图书馆应助哈哈哈采纳,获得10
10秒前
上官若男应助xiao采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
sherrinford完成签到,获得积分10
11秒前
陶淘淘发布了新的文献求助10
11秒前
武状元发布了新的文献求助10
11秒前
一二发布了新的文献求助10
11秒前
Ava应助东丶采纳,获得10
12秒前
Distance发布了新的文献求助10
12秒前
顾矜应助nn采纳,获得10
13秒前
彭于晏应助平淡的沛白采纳,获得10
13秒前
斯文的凝珍完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
烟花应助iuuuu采纳,获得20
16秒前
16秒前
okkk完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660003
求助须知:如何正确求助?哪些是违规求助? 3221343
关于积分的说明 9740065
捐赠科研通 2930748
什么是DOI,文献DOI怎么找? 1604601
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734384