Wood-inspired elastic and conductive cellulose aerogel with anisotropic tubular and multilayered structure for wearable pressure sensors and supercapacitors

气凝胶 材料科学 超级电容器 石墨烯 纳米纤维 复合材料 纳米技术 细菌纤维素 纳米结构 各向异性 纤维素 电极 电容 化学工程 化学 物理 物理化学 量子力学 工程类
作者
Feihong Chen,Yu Liao,Wei Song,Hu Zhou,Ying Wu,Yan Qing,Lei Li,Sha Luo,Cuihua Tian,Yiqiang Wu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:250: 126197-126197 被引量:15
标识
DOI:10.1016/j.ijbiomac.2023.126197
摘要

Cellulose nanofiber (CNF) aerogels hold considerable potential in wearable devices as pressure sensors and flexible electrochemical energy storage. However, the undirectional assembly of CNFs results in poor mechanical performance, which limits their application in structural engineering. In this study, we propose an anisotropic aerogel with both elastic and conductive properties inspired by the micro-nanostructure of natural wood. One-dimensional TEMPO cellulose nanofibers (TOCNF) were utilized as structural building blocks, while two-dimensional reduced graphene oxide (rGO) served as the electron transfer platform, owing to their high mechanical strength. The directionally aligned tubular structure composed of multilayered sheets was formed through rapid unidirectional freezing and subsequent steam heating reduction. These structures efficiently transferred stress throughout the porous skeleton, resulting in TOCNF-rGO aerogels with high compressibility and excellent fatigue resistance (2000 cycles at 60 % strain). The aerogel also exhibited high sensitivity, wide detection range, relatively fast response, and excellent compression cycle stability, making it suitable for accurately detecting various human biological and motion signals. Additionally, TOCNF-rGO can be assembled into a flexible all-solid-state symmetric supercapacitor that delivers excellent electrochemical performance. It is expected that this biomass-derived aerogel will be a versatile material for flexible electronic devices for energy conversion and storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧筮发布了新的文献求助20
刚刚
刚刚
刚刚
Ice_zhao完成签到,获得积分10
1秒前
Young完成签到,获得积分10
1秒前
2秒前
清秀的砖头给清秀的砖头的求助进行了留言
2秒前
康康发布了新的文献求助10
2秒前
2秒前
ZXR完成签到,获得积分10
2秒前
Renhong发布了新的文献求助10
2秒前
清脆的天亦完成签到 ,获得积分10
3秒前
蒲婉秋发布了新的文献求助30
3秒前
善学以致用应助林林采纳,获得10
4秒前
4秒前
大力向南发布了新的文献求助10
4秒前
今后应助苹果丑采纳,获得10
4秒前
Wongbee关注了科研通微信公众号
4秒前
4秒前
小猫宝完成签到,获得积分10
5秒前
oo发布了新的文献求助10
5秒前
6秒前
6秒前
Daisy发布了新的文献求助10
6秒前
6秒前
流露完成签到,获得积分10
7秒前
sad完成签到,获得积分10
7秒前
JW发布了新的文献求助10
8秒前
8秒前
科目三应助忧伤的彩虹采纳,获得10
9秒前
Raul发布了新的文献求助10
10秒前
10秒前
自然的钻石完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
无限的乌冬面完成签到,获得积分10
12秒前
勇往直前发布了新的文献求助10
12秒前
dongdong完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587