Wood-inspired elastic and conductive cellulose aerogel with anisotropic tubular and multilayered structure for wearable pressure sensors and supercapacitors

气凝胶 材料科学 超级电容器 石墨烯 纳米纤维 复合材料 纳米技术 细菌纤维素 纳米结构 各向异性 纤维素 电极 电容 化学工程 化学 物理 物理化学 量子力学 工程类
作者
Feihong Chen,Yu Liao,Wei Song,Hu Zhou,Ying Wu,Yan Qing,Lei Li,Sha Luo,Cuihua Tian,Yiqiang Wu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:250: 126197-126197 被引量:15
标识
DOI:10.1016/j.ijbiomac.2023.126197
摘要

Cellulose nanofiber (CNF) aerogels hold considerable potential in wearable devices as pressure sensors and flexible electrochemical energy storage. However, the undirectional assembly of CNFs results in poor mechanical performance, which limits their application in structural engineering. In this study, we propose an anisotropic aerogel with both elastic and conductive properties inspired by the micro-nanostructure of natural wood. One-dimensional TEMPO cellulose nanofibers (TOCNF) were utilized as structural building blocks, while two-dimensional reduced graphene oxide (rGO) served as the electron transfer platform, owing to their high mechanical strength. The directionally aligned tubular structure composed of multilayered sheets was formed through rapid unidirectional freezing and subsequent steam heating reduction. These structures efficiently transferred stress throughout the porous skeleton, resulting in TOCNF-rGO aerogels with high compressibility and excellent fatigue resistance (2000 cycles at 60 % strain). The aerogel also exhibited high sensitivity, wide detection range, relatively fast response, and excellent compression cycle stability, making it suitable for accurately detecting various human biological and motion signals. Additionally, TOCNF-rGO can be assembled into a flexible all-solid-state symmetric supercapacitor that delivers excellent electrochemical performance. It is expected that this biomass-derived aerogel will be a versatile material for flexible electronic devices for energy conversion and storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭郭发布了新的文献求助10
刚刚
1秒前
科研通AI2S应助kaww采纳,获得10
3秒前
boshi发布了新的文献求助10
3秒前
zhang完成签到,获得积分10
4秒前
5秒前
俊、、完成签到,获得积分10
6秒前
郭郭完成签到,获得积分10
7秒前
高贵的洋葱完成签到,获得积分10
7秒前
搜集达人应助sunshine采纳,获得10
8秒前
9秒前
kaww完成签到,获得积分20
10秒前
深情安青应助shenghaowen采纳,获得10
10秒前
兔子应助熊二采纳,获得20
10秒前
山水之乐发布了新的文献求助10
11秒前
月老别闹完成签到 ,获得积分10
11秒前
君子不器发布了新的文献求助10
12秒前
niu发布了新的文献求助10
12秒前
科研通AI2S应助一北采纳,获得10
13秒前
13秒前
14秒前
17秒前
君子不器完成签到,获得积分10
22秒前
负责半蕾发布了新的文献求助10
22秒前
orixero应助yaqingzi采纳,获得10
24秒前
26秒前
233完成签到,获得积分10
29秒前
feiying发布了新的文献求助10
29秒前
脑洞疼应助g6809548采纳,获得10
29秒前
负责半蕾完成签到,获得积分10
30秒前
niu完成签到,获得积分10
31秒前
Dxy-TOFA完成签到,获得积分10
31秒前
33秒前
33秒前
33秒前
39秒前
江海潮生完成签到 ,获得积分10
42秒前
在水一方应助流萤采纳,获得10
43秒前
44秒前
sunshine发布了新的文献求助10
44秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 800
Neuromorphic Circuits for Nanoscale Devices 501
消化器内視鏡関連の偶発症に関する第7回全国調査報告2019〜2021年までの3年間 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2863106
求助须知:如何正确求助?哪些是违规求助? 2468837
关于积分的说明 6695134
捐赠科研通 2159616
什么是DOI,文献DOI怎么找? 1147144
版权声明 585212
科研通“疑难数据库(出版商)”最低求助积分说明 563681