钻机-I
生物
RNA解旋酶A
解旋酶
溶解循环
病毒复制
细胞生物学
模式识别受体
效应器
抄写(语言学)
先天免疫系统
病毒学
分子生物学
核糖核酸
基因
病毒
受体
遗传学
语言学
哲学
作者
Yang Xu,Guoli Hou,Qizhi Liu,Qiushi Zhang,Chun Li,Liang Hu,Xiaoying Chen,Rui Chen,Chengming Ding,Deliang Li,Junhua Li
标识
DOI:10.1016/j.ijbiomac.2023.126527
摘要
Innate immunity is the first line of defense against viral pathogens. Retinoic Acid-Inducible Gene 1 (RIG-I) is a pattern recognition receptor that recognizes virus-associated double-stranded RNA and initiates the interferon responses. Besides signal transduction, RIG-I exerts direct antiviral functions to displace viral proteins on dsRNA via its Helicase activity. Nevertheless, this effector-like activity of RIG-I against herpesviruses remains largely unexplored. It has been previously reported that herpesviruses deamidate RIG-I, resulting in the abolishment of its Helicase activity and signal transduction. In this study, we discovered that RIG-I possessed signaling-independent antiviral activities against murine gamma herpesviruses 68 (γHV68, murid herpesvirus 4). Importantly, a Helicase-dead mutant of RIG-I (K270A) demonstrated comparable inhibition on herpesviruses lytic replication, indicating that this antiviral activity is Helicase-independent. Mechanistically, RIG-I bound the Replication and Transcription Activator (RTA) and diminished its nuclear localization to repress viral transcription. We further demonstrated that RIG-I blocked the nuclear translocation of ORF21 (Thymidine Kinase), ORF75c (vGAT), both of which form a nuclear complex with RTA and RNA polymerase II (Pol II) to facilitate viral transcription. Moreover, RIG-I retained ORF59 (DNA processivity factor) in the cytoplasm to repress viral DNA replication. Altogether, we illuminated a previously unidentified, Helicase-independent effector-like function of RIG-I against γHV68, representing an exquisite host strategy to counteract viral manipulations on innate immune signaling. IMPORTANCE: Retinoic acid-inducible gene I (RIG-I), a member of DExD/H box RNA helicase family, functions as a key pattern recognition receptor (PRR) responsible for the detection of intracellular double-stranded RNA (dsRNA) from virus-infected cells and induction of type I interferon (IFN) responses. Nevertheless, our understanding of the helicase-independent effector-like activity of RIG-I against virus infection, especially herpesvirus infection, remains largely unknown. Herein, by deploying murine gamma herpesviruses 68 (γHV68) as a model system, we demonstrated that RIG-I possessed an interferon and helicase-independent antiviral activity against γHV68 via blocking the nuclear trafficking of viral proteins, which concomitantly repressed the viral early transcription and genome replication thereof. Our work illuminates a previously unidentified antiviral strategy of RIG-I against herpesvirus infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI