Cross-level collaborative context-aware framework for medical image segmentation

计算机科学 棱锥(几何) 编码器 分割 背景(考古学) 特征(语言学) 人工智能 解码方法 图像分割 编码(内存) 模式识别(心理学) 计算机视觉 算法 物理 哲学 光学 古生物学 操作系统 生物 语言学
作者
Chao Suo,Tianxin Zhou,Kai Hu,Yuan Zhang,Xieping Gao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121319-121319 被引量:2
标识
DOI:10.1016/j.eswa.2023.121319
摘要

Efficient and accurate medical image segmentation is necessary for pathological evaluation and disease diagnosis in clinical practice. In recent years, the U-shaped encoder–decoder structure has achieved good performance in various medical image segmentation tasks. It is a neural network model similar to the letter U, which can gradually reduce the spatial dimension of the feature map to capture high-level semantic information in the feature encoding stage, and can make up for the lack of target detail information in the feature decoding stage to decouple the final segmentation results. However, the U-shaped encoder–decoder structure still suffers from semantic asymmetry and global semantic dilution problems, which are exacerbated during decoding, due to the limitation of the framework's fixation. In this paper, we propose a cross-level collaborative context-aware framework (C3-Net) to address the aforementioned issues in medical image segmentation. The main contributions of this research include: (i) To address the inherent problems in the U-shaped structure, we propose the C3-Net to explore the differences between cross-level contextual information effectively; (ii) To achieve detailed information preservation and semantic information enhancement, we present a Channel Scale-aware Context Enhancement (CSCE) module to enhance low-level contextual features from the global and local scales of the channel dimension; (iii) A Spatial Pyramid Context Alignment (SPCA) module is designed to extract and align pyramid features, thus obtaining accurate global contextual features at the network's top; (iv) We propose a Cross-Level Collaborative Context Refinement (CCCR) module to enable efficient collaboration between cross-level contextual features to simultaneously achieve semantic alignment and global semantic enhancement. The outcomes of implementing the proposed method on three publicly available datasets (Synapse, ACDC, and GlaS) and one private dataset (VMICH) show that the proposed method outperforms all competing approaches on four datasets. Our C3-Net achieves new state-of-the-art performance on four image segmentation tasks with Dice scores of 85.26%, 92.10%, 87.20%, and 87.61%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲸鲸发布了新的文献求助10
刚刚
刚刚
鲁丁丁发布了新的文献求助10
刚刚
烟花应助accpeted采纳,获得10
1秒前
帅气面包完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
傻子与白痴完成签到,获得积分10
1秒前
不厌完成签到,获得积分10
2秒前
Muran完成签到,获得积分0
3秒前
桐桐应助蜡笔小新采纳,获得10
3秒前
头头完成签到,获得积分10
3秒前
3秒前
wangq完成签到,获得积分10
4秒前
rlix完成签到,获得积分20
4秒前
biomichael完成签到,获得积分10
4秒前
4秒前
4秒前
FAN完成签到,获得积分10
5秒前
ning完成签到,获得积分10
5秒前
共享精神应助Paddi采纳,获得10
5秒前
瞌睡社畜发布了新的文献求助10
6秒前
跳跳虎完成签到 ,获得积分10
6秒前
nini完成签到,获得积分10
6秒前
英俊的铭应助愉快绿蓉采纳,获得50
7秒前
7秒前
7秒前
8秒前
朱桂林完成签到,获得积分10
8秒前
小怪兽发布了新的文献求助10
8秒前
8秒前
9秒前
华仔应助Finley采纳,获得10
10秒前
小琪猪发布了新的文献求助10
10秒前
大晟归来发布了新的文献求助10
10秒前
懵懂的毛豆完成签到,获得积分10
11秒前
超级的飞飞完成签到,获得积分10
11秒前
11秒前
樱香音子发布了新的文献求助30
11秒前
fsky发布了新的文献求助10
12秒前
Shen发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635