Cross-level collaborative context-aware framework for medical image segmentation

计算机科学 棱锥(几何) 编码器 分割 背景(考古学) 特征(语言学) 人工智能 解码方法 图像分割 编码(内存) 模式识别(心理学) 计算机视觉 算法 物理 哲学 光学 古生物学 操作系统 生物 语言学
作者
Chao Suo,Tianxin Zhou,Kai Hu,Yuan Zhang,Xieping Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121319-121319 被引量:2
标识
DOI:10.1016/j.eswa.2023.121319
摘要

Efficient and accurate medical image segmentation is necessary for pathological evaluation and disease diagnosis in clinical practice. In recent years, the U-shaped encoder–decoder structure has achieved good performance in various medical image segmentation tasks. It is a neural network model similar to the letter U, which can gradually reduce the spatial dimension of the feature map to capture high-level semantic information in the feature encoding stage, and can make up for the lack of target detail information in the feature decoding stage to decouple the final segmentation results. However, the U-shaped encoder–decoder structure still suffers from semantic asymmetry and global semantic dilution problems, which are exacerbated during decoding, due to the limitation of the framework's fixation. In this paper, we propose a cross-level collaborative context-aware framework (C3-Net) to address the aforementioned issues in medical image segmentation. The main contributions of this research include: (i) To address the inherent problems in the U-shaped structure, we propose the C3-Net to explore the differences between cross-level contextual information effectively; (ii) To achieve detailed information preservation and semantic information enhancement, we present a Channel Scale-aware Context Enhancement (CSCE) module to enhance low-level contextual features from the global and local scales of the channel dimension; (iii) A Spatial Pyramid Context Alignment (SPCA) module is designed to extract and align pyramid features, thus obtaining accurate global contextual features at the network's top; (iv) We propose a Cross-Level Collaborative Context Refinement (CCCR) module to enable efficient collaboration between cross-level contextual features to simultaneously achieve semantic alignment and global semantic enhancement. The outcomes of implementing the proposed method on three publicly available datasets (Synapse, ACDC, and GlaS) and one private dataset (VMICH) show that the proposed method outperforms all competing approaches on four datasets. Our C3-Net achieves new state-of-the-art performance on four image segmentation tasks with Dice scores of 85.26%, 92.10%, 87.20%, and 87.61%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zc发布了新的文献求助10
1秒前
曹曹完成签到 ,获得积分20
2秒前
Akim应助如意葶采纳,获得10
2秒前
2秒前
桐桐应助PANSIXUAN采纳,获得10
4秒前
受伤破茧完成签到,获得积分10
6秒前
7秒前
思芋奶糕发布了新的文献求助10
7秒前
小耗子完成签到,获得积分10
8秒前
狂野绿竹完成签到,获得积分10
9秒前
zc完成签到,获得积分10
9秒前
我ppp完成签到 ,获得积分10
11秒前
AnYX发布了新的文献求助10
13秒前
house完成签到,获得积分10
15秒前
16秒前
卡不卡不完成签到,获得积分10
20秒前
兴奋梦竹发布了新的文献求助10
21秒前
标致的方盒完成签到,获得积分10
21秒前
23秒前
蔡翌文完成签到 ,获得积分10
24秒前
花朝唯完成签到 ,获得积分10
25秒前
kk完成签到,获得积分10
26秒前
28秒前
hqn完成签到 ,获得积分10
29秒前
开开心心的开心完成签到,获得积分10
34秒前
41秒前
42秒前
保持理智完成签到,获得积分10
42秒前
俭朴的誉完成签到 ,获得积分10
45秒前
yinwenchen发布了新的文献求助50
46秒前
48秒前
48秒前
orixero应助程昱采纳,获得10
48秒前
小马甲应助sltg采纳,获得10
48秒前
49秒前
niuniu发布了新的文献求助10
52秒前
江流儿发布了新的文献求助10
55秒前
火星上的幻梦完成签到 ,获得积分10
55秒前
暴龙战士图图完成签到,获得积分10
57秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388