A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 放射科
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier]
卷期号:40 (4): 1197-1205 被引量:13
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangping发布了新的文献求助10
刚刚
李爱国应助小豆芽儿采纳,获得10
刚刚
1秒前
1秒前
FFF完成签到,获得积分20
2秒前
学术小黄完成签到,获得积分10
2秒前
么系么系发布了新的文献求助10
2秒前
3秒前
小洪俊熙完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
SYLH应助di采纳,获得10
4秒前
4秒前
柒毛完成签到 ,获得积分10
5秒前
搜集达人应助tatata采纳,获得20
5秒前
英俊的铭应助诚c采纳,获得10
5秒前
兔子完成签到 ,获得积分10
5秒前
5秒前
苹果巧蕊完成签到 ,获得积分10
5秒前
脑洞疼应助SDS采纳,获得10
5秒前
JamesPei应助Guo采纳,获得20
6秒前
马保国123完成签到,获得积分10
6秒前
6秒前
6秒前
迷你的冰巧完成签到,获得积分10
6秒前
万能图书馆应助学术蝗虫采纳,获得10
7秒前
慕青应助aurora采纳,获得30
7秒前
Jasper应助满意的盼夏采纳,获得10
7秒前
yitang完成签到,获得积分10
9秒前
www完成签到,获得积分10
9秒前
zhenzhen发布了新的文献求助10
9秒前
飞羽发布了新的文献求助10
9秒前
江沅完成签到 ,获得积分10
9秒前
10秒前
10秒前
Sean完成签到,获得积分10
10秒前
兜兜完成签到 ,获得积分10
10秒前
羊羊羊发布了新的文献求助10
11秒前
Rui完成签到,获得积分10
11秒前
bigger.b完成签到,获得积分10
11秒前
Nerissa完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678