A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 接收机工作特性 诊断准确性 关节镜检查 放射科 深度学习 人工智能 机器学习 内科学 计算机科学
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier]
被引量:10
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhh发布了新的文献求助10
刚刚
rosalieshi完成签到,获得积分0
刚刚
1秒前
浮空鱼发布了新的文献求助10
1秒前
桐桐应助李存鹤采纳,获得10
3秒前
123完成签到,获得积分20
3秒前
研友_Z729Mn完成签到,获得积分10
3秒前
Zz发布了新的文献求助10
3秒前
滴滴哒哒发布了新的文献求助10
6秒前
9秒前
科研通AI2S应助overThat采纳,获得10
9秒前
11秒前
myg123发布了新的文献求助10
11秒前
科研通AI2S应助可靠的清涟采纳,获得10
11秒前
Lee发布了新的文献求助10
12秒前
朴实冬灵发布了新的文献求助10
12秒前
13秒前
myt完成签到 ,获得积分10
13秒前
13秒前
李爱国应助lei锋采纳,获得10
13秒前
壮观的冰棍完成签到,获得积分10
13秒前
14秒前
闪电牛完成签到,获得积分20
14秒前
无名完成签到,获得积分20
14秒前
雨碎寒江发布了新的文献求助10
15秒前
15秒前
Lucia发布了新的文献求助10
15秒前
15秒前
cbz发布了新的文献求助10
17秒前
羊羊羊发布了新的文献求助10
18秒前
充电宝应助老迟到的灵煌采纳,获得10
19秒前
山谷与花完成签到,获得积分20
19秒前
freebound完成签到,获得积分10
20秒前
99411完成签到 ,获得积分10
21秒前
22秒前
23秒前
飞快的紫夏完成签到,获得积分10
25秒前
Akim应助noya仙贝采纳,获得10
25秒前
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084626
求助须知:如何正确求助?哪些是违规求助? 2737675
关于积分的说明 7546358
捐赠科研通 2387296
什么是DOI,文献DOI怎么找? 1265911
科研通“疑难数据库(出版商)”最低求助积分说明 613207
版权声明 598409