A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 接收机工作特性 诊断准确性 关节镜检查 放射科 深度学习 人工智能 机器学习 内科学 计算机科学
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier]
被引量:10
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
aabbb完成签到 ,获得积分10
1秒前
ZeradesY发布了新的文献求助10
1秒前
独立江湖女完成签到 ,获得积分10
1秒前
共享精神应助舒心平蝶采纳,获得10
1秒前
2秒前
LYH完成签到,获得积分10
2秒前
左丘冥完成签到,获得积分10
2秒前
shutup完成签到,获得积分10
3秒前
清秀向卉关注了科研通微信公众号
3秒前
八戒完成签到 ,获得积分0
3秒前
3秒前
丘比特应助李大爷采纳,获得10
3秒前
Jox发布了新的文献求助200
3秒前
4秒前
5秒前
甜甜圈发布了新的文献求助10
5秒前
wz发布了新的文献求助10
6秒前
化工兔举报臧真求助涉嫌违规
6秒前
结实的丹雪完成签到,获得积分10
6秒前
DarrenVan发布了新的文献求助50
7秒前
言悦完成签到,获得积分10
7秒前
失眠剑发布了新的文献求助10
7秒前
9秒前
XWY完成签到,获得积分0
9秒前
麋鹿发布了新的文献求助10
9秒前
10秒前
挺喜欢你发布了新的文献求助10
11秒前
11秒前
李茶嘚完成签到,获得积分20
12秒前
xuxingjie发布了新的文献求助10
13秒前
zxx完成签到 ,获得积分10
14秒前
华仔应助acz采纳,获得10
14秒前
Jasper应助acz采纳,获得10
14秒前
朴素的天蓝完成签到,获得积分10
14秒前
14秒前
jzh6666发布了新的文献求助10
15秒前
Lucas应助浅笑暖暖采纳,获得10
15秒前
fff发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038