亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 放射科
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier]
卷期号:40 (4): 1197-1205 被引量:30
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助ceeray23采纳,获得20
刚刚
研友_GZ3EbL发布了新的文献求助10
11秒前
英姑应助ceeray23采纳,获得20
11秒前
16秒前
windseek发布了新的文献求助10
22秒前
24秒前
27秒前
31秒前
xixiazhiwang完成签到 ,获得积分10
31秒前
爱科研的小凡完成签到,获得积分10
33秒前
35秒前
ceeray23发布了新的文献求助20
40秒前
1分钟前
1分钟前
1分钟前
1分钟前
九月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
橙子发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
顾矜应助大半个菜鸟采纳,获得10
1分钟前
1分钟前
1分钟前
lct360发布了新的文献求助10
1分钟前
桔梗完成签到 ,获得积分10
2分钟前
宾师傅发布了新的文献求助10
2分钟前
2分钟前
可可是欧皇完成签到,获得积分10
2分钟前
要减肥若烟完成签到,获得积分20
2分钟前
Chouvikin完成签到,获得积分10
2分钟前
大模型应助ceeray23采纳,获得20
2分钟前
jerry完成签到,获得积分10
2分钟前
负责的元柏完成签到,获得积分10
2分钟前
在水一方应助学医的小陈采纳,获得10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515700
求助须知:如何正确求助?哪些是违规求助? 4609035
关于积分的说明 14514345
捐赠科研通 4545526
什么是DOI,文献DOI怎么找? 2490649
邀请新用户注册赠送积分活动 1472533
关于科研通互助平台的介绍 1444249