A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 放射科
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier]
卷期号:40 (4): 1197-1205 被引量:30
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Vinny发布了新的文献求助80
1秒前
奥特曼打小人完成签到,获得积分10
1秒前
kei发布了新的文献求助10
2秒前
迷路的邪欢完成签到,获得积分10
2秒前
wanci应助fairy采纳,获得10
3秒前
3秒前
小马甲应助裤里采纳,获得10
3秒前
3秒前
Hydro发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
7秒前
想顺利毕业完成签到 ,获得积分10
7秒前
郭腾发布了新的文献求助10
7秒前
bkagyin应助迷路的邪欢采纳,获得20
7秒前
量子星尘发布了新的文献求助10
8秒前
donny发布了新的文献求助10
8秒前
丘比特应助杜晓倩采纳,获得10
9秒前
tyz完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
无花果应助potato采纳,获得10
10秒前
无奈萝发布了新的文献求助10
10秒前
11秒前
情怀应助茶米采纳,获得10
11秒前
12秒前
米米碎片完成签到,获得积分10
12秒前
rsdggsrser完成签到 ,获得积分10
13秒前
Ttttt发布了新的文献求助10
13秒前
wanci应助qiong采纳,获得10
14秒前
tyz关闭了tyz文献求助
14秒前
14秒前
FashionBoy应助donny采纳,获得10
15秒前
顺利毕业完成签到,获得积分10
15秒前
学长发布了新的文献求助10
16秒前
刘岩松完成签到,获得积分20
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133