A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging

医学 磁共振成像 前交叉韧带 放射科
作者
Dingyu Wang,Shang-gui Liu,Jia Ding,An-lan Sun,Dong Jiang,Jia Jiang,Jinzhong Zhao,Desheng Chen,Gang Ji,Nan Li,Huishu Yuan,Jia‐Kuo Yu
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:40 (4): 1197-1205 被引量:18
标识
DOI:10.1016/j.arthro.2023.08.010
摘要

Purpose

The purpose of this study was to develop a deep learning model to accurately detect anterior cruciate ligament (ACL) ruptures on magnetic resonance imaging (MRI) and to evaluate its effect on the diagnostic accuracy and efficiency of clinicians.

Methods

A training dataset was built from MRIs acquired from January 2017 to June 2021, including patients with knee symptoms, irrespective of ACL ruptures. An external validation dataset was built from MRIs acquired from January 2021 to June 2022, including patients who underwent knee arthroscopy or arthroplasty. Patients with fractures or prior knee surgeries were excluded in both datasets. Subsequently, a deep learning model was developed and validated using these datasets. Clinicians of varying expertise levels in sports medicine and radiology were recruited, and their capacities in diagnosing ACL injuries in terms of accuracy and diagnosing time were evaluated both with and without artificial intelligence (AI) assistance.

Results

A deep learning model was developed based on the training dataset of 22,767 MRIs from 5 centers and verified with external validation dataset of 4,086 MRIs from 6 centers. The model achieved an area under the receiver operating characteristic curve of 0.987 and a sensitivity and specificity of 95.1%. Thirty-eight clinicians from 25 centers were recruited to diagnose 3,800 MRIs. The AI assistance significantly improved the accuracy of all clinicians, exceeding 96%. Additionally, a notable reduction in diagnostic time was observed. The most significant improvements in accuracy and time efficiency were observed in the trainee groups, suggesting that AI support is particularly beneficial for clinicians with moderately limited diagnostic expertise.

Conclusions

This deep learning model demonstrated expert-level diagnostic performance for ACL ruptures, serving as a valuable tool to assist clinicians of various specialties and experience levels in making accurate and efficient diagnoses.

Level of Evidence

Level III, retrospective comparative case series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
能干的鞅完成签到,获得积分10
1秒前
溪陆发布了新的文献求助10
1秒前
1秒前
完美世界应助霜之哀伤采纳,获得10
1秒前
慕青应助zhangao采纳,获得10
2秒前
或无情完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
深情安青应助Meredith采纳,获得10
2秒前
JamesPei应助小张z采纳,获得10
3秒前
诸乌完成签到,获得积分10
3秒前
3秒前
hah发布了新的文献求助10
3秒前
开心发布了新的文献求助10
4秒前
4秒前
Lucas应助赵不理采纳,获得10
4秒前
Jasper应助认真觅荷采纳,获得10
4秒前
Owen应助勤劳樱采纳,获得10
4秒前
弱水关注了科研通微信公众号
4秒前
研友_VZG7GZ应助旺仔牛奶采纳,获得10
5秒前
超靓诺言发布了新的文献求助10
5秒前
猪猪hero发布了新的文献求助10
5秒前
6秒前
6秒前
小熊猫发布了新的文献求助100
6秒前
共享精神应助陈嘉木采纳,获得10
7秒前
JamesPei应助li采纳,获得10
7秒前
9秒前
9秒前
9秒前
9秒前
9秒前
上官若男应助超靓诺言采纳,获得10
10秒前
10秒前
走走发布了新的文献求助10
10秒前
安静的芝麻完成签到,获得积分10
10秒前
ceo发布了新的文献求助10
10秒前
CGAT发布了新的文献求助10
10秒前
FashionBoy应助splaker7采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371