APLDP: Adaptive personalized local differential privacy data collection in mobile crowdsensing

差别隐私 计算机科学 拥挤感测 数据收集 信息敏感性 数据挖掘 均方误差 计算机安全 数学 统计
作者
Haina Song,Hua Shen,Nan Zhao,Zishu He,Minghu Wu,Wei Xiong,Mingwu Zhang
出处
期刊:Computers & Security [Elsevier]
卷期号:136: 103517-103517
标识
DOI:10.1016/j.cose.2023.103517
摘要

Local differential privacy (LDP) enables terminal participants to share their private data safely while controlling the privacy disclosure at the source. In the majority of current works, they assumed that the privacy preservation parameter is totally determined by the data collector and then dispatched to all participants in mobile crowdsensing. However, in the real world, due to different privacy preferences of participants, it is inelegant and unpromising for all participants to accept the same privacy preservation level during data collection. To address such issue, an adaptive personalized local differential privacy (APLDP) data collection scheme is proposed to realize personalized privacy preservation while achieving higher data utility, in which two different LDP perturbation methods (basic RAPPOR and k-RR) are adaptively chosen by the participants according to their different privacy preferences, as well as the best perturbation probability is adaptively adopted by the participants to perturb their private data. In such case, the adaptive boundary based on the minimum mean square error (MSE) is theoretically derived to allow the participant to adaptively choose the best perturbation method, and meanwhile, it allows the participant to adaptively choose the best perturbation probability. Then, two estimation mergence methods named the direct combination (DC) and the weighted combination (WC) are demonstrated to do efficient data aggregation. Experiments on both synthetic and real data sets show that the proposed APLDP scheme performs better than previous non-personalized proposals in terms of the MSE and the average error rate (AER), especially using WC estimation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助yan123采纳,获得10
1秒前
tuanheqi应助123采纳,获得50
1秒前
long发布了新的文献求助10
1秒前
老天师一巴掌完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
自由的渗透奈鱼完成签到,获得积分10
3秒前
蓝莓小姐发布了新的文献求助10
3秒前
3秒前
3秒前
李健应助tiantian采纳,获得10
5秒前
KEYANMINGONG发布了新的文献求助10
6秒前
光亮萤发布了新的文献求助20
6秒前
zhoutian发布了新的文献求助10
6秒前
xiaoyu完成签到,获得积分20
6秒前
陈业伟完成签到,获得积分10
9秒前
10秒前
大模型应助沈星星采纳,获得10
11秒前
11秒前
Amie完成签到,获得积分10
11秒前
11秒前
言不得语发布了新的文献求助10
12秒前
QAQSS完成签到 ,获得积分10
12秒前
枫尽完成签到,获得积分10
12秒前
13秒前
阿敲完成签到 ,获得积分10
14秒前
同型半胱氨酸完成签到,获得积分10
14秒前
14秒前
14秒前
zhoutian完成签到,获得积分20
14秒前
善学以致用应助小哒不刘采纳,获得10
14秒前
真实的未来完成签到,获得积分10
15秒前
15秒前
共享精神应助枫尽采纳,获得10
15秒前
Zed关注了科研通微信公众号
16秒前
臭图图发布了新的文献求助10
16秒前
摆烂小鱼鱼完成签到,获得积分20
16秒前
eny完成签到 ,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870