Advanced crack detection and segmentation on bridge decks using deep learning

分割 桥(图论) 计算机科学 人工智能 结构工程 桥面 深度学习 过程(计算) 网(多面体) 模式识别(心理学) 目标检测 甲板 工程类 数学 几何学 医学 内科学 操作系统
作者
Thai Son Tran,Son Dong Nguyen,Hyun Jong Lee,Van Phuc Tran
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:400: 132839-132839 被引量:32
标识
DOI:10.1016/j.conbuildmat.2023.132839
摘要

Detecting and measuring cracks on a bridge deck is crucial for preventing further damage and ensuring safety. However, manual methods are slow and subjective, highlighting the need for an efficient solution to detect and measure crack length and width. This study proposes a novel process-based deep learning approach for detecting and segmenting cracks on the bridge deck. Five state-of-the-art object detection networks were evaluated for their performance in detecting cracks: Faster RCNN-ResNet50, Faster RCNN-ResNet101, RetinaNet-ResNet50, RetinaNet-ResNet101, and YOLOv7. Additionally, two object segmentation networks, U-Net, and pix2pix, were optimized by experimenting with various network depths, activation functions, loss functions, and data augmentation to segment the detected cracks. The results showed that YOLOv7 outperformed both Faster RCNN and RetinaNet with both ResNet50 and ResNet101 backbones in terms of both speed and accuracy. Furthermore, the proposed U-Net is better than the mainstream U-Net and pix2pix networks. Based on these results, YOLOv7 and the proposed U-Net are integrated for detecting and segmenting cracks on a bridge deck. The proposed method was then applied to two bridges in South Korea to test its performance, and the results showed that it could detect crack length with an accuracy of 92.38 percent. Moreover, the proposed method can determine crack width and classify it with an R2 value of 0.87 and an average accuracy of 91 percent, respectively. In summary, this study provides an efficient and reliable method for detecting, measuring, and classifying cracks on a bridge deck surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奇异果完成签到,获得积分20
刚刚
柊巳发布了新的文献求助10
刚刚
1秒前
Irving发布了新的文献求助10
1秒前
2秒前
恒123完成签到,获得积分10
5秒前
xxddw完成签到,获得积分10
5秒前
NexusExplorer应助liam采纳,获得10
5秒前
oreo发布了新的文献求助10
6秒前
杨恭鑫发布了新的文献求助10
6秒前
7秒前
所所应助turui采纳,获得10
10秒前
11秒前
oreo完成签到,获得积分10
11秒前
Dou完成签到,获得积分10
11秒前
13秒前
13秒前
北海qy完成签到,获得积分10
14秒前
新安完成签到,获得积分10
14秒前
15秒前
15秒前
17秒前
win发布了新的文献求助10
17秒前
Ava应助研友_楼灵煌采纳,获得10
17秒前
17秒前
研友_VZG7GZ应助裴佳晨采纳,获得10
18秒前
笨笨友桃完成签到,获得积分10
19秒前
19秒前
liam发布了新的文献求助10
20秒前
科研通AI2S应助陆靖易采纳,获得10
21秒前
dbdxyty发布了新的文献求助10
22秒前
柚子发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
zhou应助侯松采纳,获得30
24秒前
Jasper应助Jiangzhibing采纳,获得10
25秒前
Jasper应助Jiangzhibing采纳,获得10
25秒前
彭于晏应助Jiangzhibing采纳,获得10
25秒前
慕青应助Jiangzhibing采纳,获得10
25秒前
DF发布了新的文献求助10
25秒前
浪客完成签到 ,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415