Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction

异核分子 催化作用 石墨烯 密度泛函理论 选择性 化学 金属 电催化剂 材料科学 无机化学 分子 光化学 电化学 计算化学 纳米技术 物理化学 电极 有机化学
作者
Ji Zhang,Aimin Yu,Chenghua Sun
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:52: 263-270 被引量:8
标识
DOI:10.1016/s1872-2067(23)64500-0
摘要

Electrochemical nitrogen reduction reaction (eNRR) is a promising strategy for sustainable ammonia production. To achieve high yield and energy efficiency, single-atom dispersion on nitrogen-doped graphene nanosheets has been extensively explored as an electrocatalyst for eNRR. However, challenges remain owing to the high overpotentials arising from unitary active sites and unabundant ligands. In this study, heteronuclear dual-metal catalysts with different non-metals doped in a graphene frame were computationally designed. After a two-step scanning based on density functional theory calculations, five candidates, namely FeMo-S, RuMo-B, RuMo-P, RuMo-S, and RuW-S, were identified as promising catalysts with calculated onset potentials of –0.18, –0.25, –0.27, –0.29, and –0.24 V, respectively. These catalysts can also effectively suppress the competitive hydrogen evolution reaction during NRR. Such excellent catalytic performance origins from two synergetic effects: (1) the cooperation of heteronuclear metals contribute to the electron transfer from active sites to the anti-bonding orbitals of N2 molecules adsorbed on catalysts to effectively activate N≡N bonds; (2) metal-ligands (non-metals) interactions moderate the binding strength of intermediates to slab, which is one of reasons for low NRR onset potential and high NH3 selectivity. The present study provides a theoretical understanding of the NRR mechanism of dual-metal catalysts, offering useful guidance for the rational design of catalysts with high selectivity and activity for NRR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
callit完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
jundongfan完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
希望天下0贩的0应助zw采纳,获得10
1秒前
小二郎应助DAL采纳,获得10
1秒前
物华弥新完成签到 ,获得积分10
4秒前
英姑应助雾语采纳,获得10
4秒前
落寞的又菡完成签到,获得积分10
4秒前
脑洞疼应助大气摩托采纳,获得10
4秒前
shijie805发布了新的文献求助10
4秒前
4秒前
碧球发布了新的文献求助10
5秒前
陌然浅笑完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
了一李应助flora采纳,获得10
5秒前
可爱的弘文完成签到,获得积分20
6秒前
科研通AI6应助蕾蕾采纳,获得10
7秒前
8秒前
科研通AI6应助牛牛很忙呀采纳,获得10
9秒前
9秒前
9秒前
elf发布了新的文献求助10
9秒前
小管发布了新的文献求助10
9秒前
Ayao完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
鸭梨发布了新的文献求助10
11秒前
HanGuilin发布了新的文献求助10
12秒前
Sakura完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666053
求助须知:如何正确求助?哪些是违规求助? 4879128
关于积分的说明 15116083
捐赠科研通 4825220
什么是DOI,文献DOI怎么找? 2583153
邀请新用户注册赠送积分活动 1537198
关于科研通互助平台的介绍 1495512