Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction

异核分子 催化作用 石墨烯 密度泛函理论 选择性 化学 金属 电催化剂 材料科学 无机化学 分子 光化学 电化学 计算化学 纳米技术 物理化学 电极 有机化学
作者
Ji Zhang,Aimin Yu,Chenghua Sun
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:52: 263-270 被引量:7
标识
DOI:10.1016/s1872-2067(23)64500-0
摘要

Electrochemical nitrogen reduction reaction (eNRR) is a promising strategy for sustainable ammonia production. To achieve high yield and energy efficiency, single-atom dispersion on nitrogen-doped graphene nanosheets has been extensively explored as an electrocatalyst for eNRR. However, challenges remain owing to the high overpotentials arising from unitary active sites and unabundant ligands. In this study, heteronuclear dual-metal catalysts with different non-metals doped in a graphene frame were computationally designed. After a two-step scanning based on density functional theory calculations, five candidates, namely FeMo-S, RuMo-B, RuMo-P, RuMo-S, and RuW-S, were identified as promising catalysts with calculated onset potentials of –0.18, –0.25, –0.27, –0.29, and –0.24 V, respectively. These catalysts can also effectively suppress the competitive hydrogen evolution reaction during NRR. Such excellent catalytic performance origins from two synergetic effects: (1) the cooperation of heteronuclear metals contribute to the electron transfer from active sites to the anti-bonding orbitals of N2 molecules adsorbed on catalysts to effectively activate N≡N bonds; (2) metal-ligands (non-metals) interactions moderate the binding strength of intermediates to slab, which is one of reasons for low NRR onset potential and high NH3 selectivity. The present study provides a theoretical understanding of the NRR mechanism of dual-metal catalysts, offering useful guidance for the rational design of catalysts with high selectivity and activity for NRR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milagu完成签到,获得积分10
刚刚
兔子应助XH采纳,获得10
刚刚
1秒前
1秒前
1秒前
懒人完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
顾矜应助Eileen采纳,获得10
3秒前
香蕉尔容完成签到,获得积分10
3秒前
Ni9e完成签到,获得积分10
4秒前
xiaotianli完成签到,获得积分10
4秒前
4秒前
Yuhong发布了新的文献求助30
4秒前
LPPQBB应助wwe采纳,获得100
5秒前
cloudup233完成签到,获得积分10
5秒前
5秒前
络巫琥关注了科研通微信公众号
5秒前
5秒前
5秒前
思源应助LMH采纳,获得10
5秒前
木头人应助研友_nEWly8采纳,获得10
6秒前
s1mple发布了新的文献求助10
6秒前
6秒前
英姑应助Polarbear29采纳,获得10
6秒前
脑洞疼应助SUN采纳,获得10
6秒前
7秒前
bkagyin应助心想事成采纳,获得10
7秒前
whhhhh发布了新的文献求助30
7秒前
ding应助义气鲂采纳,获得10
7秒前
脑洞疼应助篱篱清采纳,获得30
7秒前
情怀应助Eraser采纳,获得10
7秒前
rudjs发布了新的文献求助10
8秒前
林hh发布了新的文献求助10
8秒前
成长的点滴完成签到,获得积分10
8秒前
8秒前
8秒前
kuku_99发布了新的文献求助200
9秒前
苏莉婷完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462