A deep reinforcement learning-based approach for autonomous lane-changing velocity control in mixed flow of vehicle group level

强化学习 计算机科学 避碰 加速度 模拟 碰撞 运动(物理) 流量(计算机网络) 功能(生物学) 过程(计算) 人工智能 计算机安全 物理 经典力学 进化生物学 生物 操作系统
作者
Zhe Wang,Helai Huang,Jinjun Tang,Lipeng Hu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122158-122158 被引量:11
标识
DOI:10.1016/j.eswa.2023.122158
摘要

As an important driving behavior, lane-changing has a great impact on the safety and efficiency of traffic flow interacting with surrounding vehicles, especially in mixed traffic flows with autonomous vehicles and human-driven vehicles. This study proposes a deep reinforcement learning-based lane-changing model to train autonomous vehicles to complete lane-changing in the interaction with different human driving behaviors. First, a mixed-flow lane-changing environment of vehicle group level is constructed with surrounding vehicle trajectories extracted from natural driving trajectories. Then, the state space and action space are determined, the reward function is designed to comprehensively consider safety and efficiency, so as to guide autonomous vehicles not to collide, and determine the acceleration and direction angle to complete lane-changing behavior, and a collision avoidance strategy is integrated into the proposed method to ensure the safety of longitudinal motion. Furthermore, the trained model can learn the experience of successful lane-changing, resulting in a 90% success rate without collision in testing. Finally, the driving performance of the proposed method is analyzed in terms of safety and efficiency evaluation indicators, which proves that the proposed method can improve the efficiency and safety of the lane-changing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YouY0123发布了新的文献求助50
2秒前
2秒前
MingQue完成签到,获得积分0
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
田様应助111采纳,获得10
5秒前
5秒前
搜集达人应助112我的采纳,获得10
5秒前
6秒前
汉堡包应助小乔采纳,获得10
6秒前
今后应助眯眯眼的安雁采纳,获得30
6秒前
Akim应助shinn采纳,获得10
7秒前
irene应助难见春采纳,获得10
8秒前
机灵柚子发布了新的文献求助10
8秒前
郝好东完成签到,获得积分20
8秒前
素人渔夫完成签到,获得积分10
8秒前
旺仔完成签到,获得积分10
8秒前
tian完成签到,获得积分10
9秒前
ChenLan发布了新的文献求助10
9秒前
贴贴完成签到,获得积分10
9秒前
10秒前
神奇的种子完成签到,获得积分10
10秒前
天天快乐应助矮小的向雪采纳,获得10
10秒前
贾学冲发布了新的文献求助10
10秒前
研友_VZG7GZ应助Yxian采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
李lailai发布了新的文献求助10
11秒前
12秒前
CipherSage应助司忆采纳,获得10
12秒前
Leeee发布了新的文献求助10
12秒前
思源应助沉静的代桃采纳,获得10
13秒前
华仔应助ChenLan采纳,获得10
13秒前
Yuling完成签到,获得积分10
14秒前
酷炫芷珊发布了新的文献求助80
16秒前
rachel03发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234