EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization

校准 多项式的 接头(建筑物) 力矩(物理) 曲面(拓扑) 计算机科学 数学 算法 几何学 模拟 数学分析 结构工程 工程类 物理 统计 经典力学
作者
Ao Di,Geng Li,Mohammad S. Shourijeh,Carolynn Patten,Benjamin J. Fregly
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 4235-4244 被引量:7
标识
DOI:10.1109/tnsre.2023.3323516
摘要

Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized to subject movement data. This study developed a novel method for personalizing OpenSim cylindrical wrapping surfaces during EMG-driven model calibration. To avoid the high computational cost of repeated OpenSim muscle analyses, the method uses two-level polynomial surrogate models. Outer-level models specify time-varying muscle-tendon lengths and moment arms as functions of joint angles, while inner-level models specify time-invariant outer-level polynomial coefficients as functions of wrapping surface parameters. To evaluate the method, we used walking data collected from two individuals post-stroke and performed four variations of EMG-driven lower extremity model calibration: (1) no calibration of scaled generic wrapping surfaces (NGA), (2) calibration of outer-level polynomial coefficients for all muscles (SGA), (3) calibration of outer-level polynomial coefficients only for muscles with wrapping surfaces (LSGA), and (4) calibration of cylindrical wrapping surface parameters for muscles with wrapping surfaces (PGA). On average compared to NGA, SGA reduced lower extremity joint moment matching errors by 31%, LSGA by 24%, and PGA by 12%, with the largest reductions occurring at the hip. Furthermore, PGA reduced peak hip joint contact force by 47% bodyweight, which was the most consistent with published in vivo measurements. The proposed method for EMG-driven model calibration with wrapping surface personalization produces physically realistic OpenSim models that reduce joint moment matching errors while improving prediction of hip joint contact force.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白应助dachengzi采纳,获得10
刚刚
丘比特应助YXH采纳,获得10
1秒前
科研通AI5应助li采纳,获得10
2秒前
Lazarus发布了新的文献求助10
3秒前
爱静静应助lewis17采纳,获得10
4秒前
JOY完成签到,获得积分20
4秒前
bodhi发布了新的文献求助10
5秒前
6秒前
6秒前
菜菜子完成签到,获得积分20
9秒前
贪玩半蕾发布了新的文献求助30
9秒前
9秒前
9秒前
yaochuan完成签到,获得积分20
9秒前
Owen应助饱满的晓凡采纳,获得10
10秒前
抗抗发布了新的文献求助10
11秒前
传奇3应助积极的中蓝采纳,获得10
11秒前
丑丑阿发布了新的文献求助10
11秒前
WuYiHHH发布了新的文献求助30
12秒前
12秒前
小孟发布了新的文献求助10
14秒前
li完成签到,获得积分20
14秒前
huangrui发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
汉堡包应助良良丸采纳,获得10
18秒前
研友_VZG7GZ应助含糊的灵雁采纳,获得30
18秒前
botanist完成签到 ,获得积分10
18秒前
18秒前
18秒前
XP发布了新的文献求助10
18秒前
合适忆南完成签到,获得积分10
18秒前
科研通AI2S应助lewis17采纳,获得10
19秒前
21秒前
抗抗完成签到,获得积分10
21秒前
爆米花应助小孟采纳,获得10
21秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086