EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization

校准 多项式的 接头(建筑物) 力矩(物理) 曲面(拓扑) 计算机科学 数学 算法 几何学 模拟 数学分析 结构工程 工程类 物理 统计 经典力学
作者
Di Ao,Geng Li,Mohammad S. Shourijeh,Carolynn Patten,Benjamin J. Fregly
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 4235-4244 被引量:11
标识
DOI:10.1109/tnsre.2023.3323516
摘要

Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized to subject movement data. This study developed a novel method for personalizing OpenSim cylindrical wrapping surfaces during EMG-driven model calibration. To avoid the high computational cost of repeated OpenSim muscle analyses, the method uses two-level polynomial surrogate models. Outer-level models specify time-varying muscle-tendon lengths and moment arms as functions of joint angles, while inner-level models specify time-invariant outer-level polynomial coefficients as functions of wrapping surface parameters. To evaluate the method, we used walking data collected from two individuals post-stroke and performed four variations of EMG-driven lower extremity model calibration: (1) no calibration of scaled generic wrapping surfaces (NGA), (2) calibration of outer-level polynomial coefficients for all muscles (SGA), (3) calibration of outer-level polynomial coefficients only for muscles with wrapping surfaces (LSGA), and (4) calibration of cylindrical wrapping surface parameters for muscles with wrapping surfaces (PGA). On average compared to NGA, SGA reduced lower extremity joint moment matching errors by 31%, LSGA by 24%, and PGA by 12%, with the largest reductions occurring at the hip. Furthermore, PGA reduced peak hip joint contact force by 47% bodyweight, which was the most consistent with published in vivo measurements. The proposed method for EMG-driven model calibration with wrapping surface personalization produces physically realistic OpenSim models that reduce joint moment matching errors while improving prediction of hip joint contact force.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
May完成签到,获得积分10
刚刚
1秒前
szd完成签到,获得积分10
5秒前
小马甲应助Kkxx采纳,获得10
6秒前
Aintzane发布了新的文献求助10
7秒前
8秒前
8秒前
liuwanwan完成签到,获得积分20
9秒前
9秒前
Desperado完成签到,获得积分10
11秒前
HGQ发布了新的文献求助10
13秒前
andrewmed发布了新的文献求助10
13秒前
Desperado发布了新的文献求助10
17秒前
20秒前
CodeCraft应助May采纳,获得10
21秒前
谨慎从凝完成签到,获得积分10
23秒前
lakers发布了新的文献求助10
25秒前
感谢有你完成签到 ,获得积分10
27秒前
Akim应助田田采纳,获得10
27秒前
Twonej应助Maestro_S采纳,获得50
27秒前
星辰大海应助小鬼采纳,获得10
29秒前
33秒前
研友_VZG7GZ应助WF采纳,获得10
36秒前
37秒前
37秒前
蓝天应助达达采纳,获得10
38秒前
38秒前
39秒前
顾矜应助zzuzll采纳,获得10
39秒前
二三完成签到 ,获得积分10
41秒前
汉堡包应助lululucy采纳,获得10
41秒前
丘比特应助liaoyoujiao采纳,获得10
41秒前
钰钰yuyu完成签到,获得积分10
42秒前
阿飞飞发布了新的文献求助30
42秒前
田田发布了新的文献求助30
43秒前
44秒前
46秒前
46秒前
细心的安双完成签到,获得积分10
47秒前
123发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623