亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative and Contrastive Combined Support Sample Synthesis Model for Few/Zero-Shot Surface Defect Recognition

计算机科学 人工智能 模式识别(心理学) 相似性(几何) 样品(材料) 发电机(电路理论) 机器学习 图像(数学) 功率(物理) 化学 物理 色谱法 量子力学
作者
Yuran Dong,Cheng Xie,Luyao Xu,Hongming Cai,Weiming Shen,Hui Tang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2023.3329163
摘要

Surface defect detection is one of the most important vision-based measurements for intelligent manufacturing. Existing detection methods mainly require massive numbers of defect samples to train the model to detect the defects. Nowadays, inadequate defect samples and labels are inevitably encountered in industrial data environments due to the highly automated and stable production lines escalatingly deployed, causing fewer and fewer defective products to be produced. Consequently, manual interventions are deeply required to analyze the abnormal sample once an unseen defect accidentally emerges that significantly decreases productivity. To this end, this paper proposes a novel few/zero-shot compatible surface defect detection method without requiring massive or even any defect samples to detect surface defects. First, a novel contrastive generator is proposed to use defects’ text descriptions to synthesize “fake” visual features for those rare defects. Then, the synthesized visual features (for support samples) are fused with “real” visual features (for query samples) into a similarity graph to align the relationships between support samples and query samples. After, a class center optimization method is proposed to iteratively update the similarity matrix of the graph to obtain the classification probabilities for the query samples. Eventually, the proposed method solves the problem of the lack of defect samples and the inability of few-shot learning-based methods to recognize unseen classes. Massive experiments on eight fine-grained datasets show that our method gains an average of +8.29% improvements on few-shot recognition tasks and achieves an average of +8.23% improvements on zero-shot recognition tasks compared with the state-of-the-art method. Moreover, the proposed method is deployed in a real-world prototype system, and the method’s feasibility is finally demonstrated. The core code of the proposed method is available at: https://github.com/NDYBSNDY/AsC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
后陡门小学生完成签到 ,获得积分10
5秒前
6秒前
7秒前
小华完成签到 ,获得积分10
8秒前
弋鱼发布了新的文献求助10
8秒前
领导范儿应助maolao采纳,获得10
14秒前
14秒前
Hello应助司空天德采纳,获得10
15秒前
千寻完成签到,获得积分0
17秒前
Lizhiiiy完成签到,获得积分20
23秒前
顺利的璎完成签到 ,获得积分10
24秒前
壮观沉鱼完成签到 ,获得积分10
26秒前
28秒前
吴雪完成签到 ,获得积分10
30秒前
大胆的碧菡完成签到,获得积分10
32秒前
maolao完成签到,获得积分10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
34秒前
荷兰香猪完成签到,获得积分10
36秒前
蛋挞完成签到 ,获得积分10
44秒前
44秒前
47秒前
王王源完成签到,获得积分10
52秒前
慕青应助非著名卷心菜采纳,获得50
55秒前
开心的大米完成签到,获得积分10
56秒前
罗健完成签到 ,获得积分0
1分钟前
耍酷的鹰完成签到,获得积分10
1分钟前
Yuang完成签到 ,获得积分10
1分钟前
111发布了新的文献求助30
1分钟前
hyf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
是个哑巴发布了新的文献求助10
1分钟前
呵呵发布了新的文献求助20
1分钟前
爆米花应助是个哑巴采纳,获得10
1分钟前
1分钟前
VDC发布了新的文献求助10
1分钟前
1分钟前
yoyo完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657768
求助须知:如何正确求助?哪些是违规求助? 4812247
关于积分的说明 15080301
捐赠科研通 4815972
什么是DOI,文献DOI怎么找? 2577008
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490548