已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generative and Contrastive Combined Support Sample Synthesis Model for Few/Zero-Shot Surface Defect Recognition

计算机科学 人工智能 模式识别(心理学) 相似性(几何) 样品(材料) 发电机(电路理论) 机器学习 图像(数学) 功率(物理) 化学 物理 色谱法 量子力学
作者
Yuran Dong,Cheng Xie,Luyao Xu,Hongming Cai,Weiming Shen,Hui Tang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2023.3329163
摘要

Surface defect detection is one of the most important vision-based measurements for intelligent manufacturing. Existing detection methods mainly require massive numbers of defect samples to train the model to detect the defects. Nowadays, inadequate defect samples and labels are inevitably encountered in industrial data environments due to the highly automated and stable production lines escalatingly deployed, causing fewer and fewer defective products to be produced. Consequently, manual interventions are deeply required to analyze the abnormal sample once an unseen defect accidentally emerges that significantly decreases productivity. To this end, this paper proposes a novel few/zero-shot compatible surface defect detection method without requiring massive or even any defect samples to detect surface defects. First, a novel contrastive generator is proposed to use defects’ text descriptions to synthesize “fake” visual features for those rare defects. Then, the synthesized visual features (for support samples) are fused with “real” visual features (for query samples) into a similarity graph to align the relationships between support samples and query samples. After, a class center optimization method is proposed to iteratively update the similarity matrix of the graph to obtain the classification probabilities for the query samples. Eventually, the proposed method solves the problem of the lack of defect samples and the inability of few-shot learning-based methods to recognize unseen classes. Massive experiments on eight fine-grained datasets show that our method gains an average of +8.29% improvements on few-shot recognition tasks and achieves an average of +8.23% improvements on zero-shot recognition tasks compared with the state-of-the-art method. Moreover, the proposed method is deployed in a real-world prototype system, and the method’s feasibility is finally demonstrated. The core code of the proposed method is available at: https://github.com/NDYBSNDY/AsC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mtt发布了新的文献求助10
刚刚
momo发布了新的文献求助10
1秒前
hulian发布了新的文献求助10
1秒前
SKF完成签到,获得积分10
2秒前
2秒前
roaring完成签到,获得积分10
2秒前
浮浮世世发布了新的文献求助20
3秒前
李希发布了新的文献求助10
3秒前
4秒前
Lucas应助dild采纳,获得30
7秒前
MrTStar完成签到 ,获得积分10
8秒前
8秒前
深年发布了新的文献求助30
9秒前
lili完成签到 ,获得积分10
9秒前
于鱼发布了新的文献求助10
11秒前
着急的青枫应助axis采纳,获得10
11秒前
shy发布了新的文献求助10
13秒前
14秒前
彭于晏应助上官采纳,获得10
15秒前
楚慈楚发布了新的文献求助10
15秒前
CipherSage应助尚尚采纳,获得10
17秒前
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
20秒前
无极微光应助Jun采纳,获得20
20秒前
共享精神应助Walden采纳,获得10
21秒前
戚琪祁完成签到,获得积分10
23秒前
25秒前
酷波er应助Jesper采纳,获得10
27秒前
27秒前
高高冰旋完成签到,获得积分10
27秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558