Generative and Contrastive Combined Support Sample Synthesis Model for Few/Zero-Shot Surface Defect Recognition

计算机科学 人工智能 模式识别(心理学) 相似性(几何) 样品(材料) 发电机(电路理论) 机器学习 图像(数学) 功率(物理) 化学 物理 色谱法 量子力学
作者
Yuran Dong,Cheng Xie,Luyao Xu,Hongming Cai,Weiming Shen,Hui Tang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2023.3329163
摘要

Surface defect detection is one of the most important vision-based measurements for intelligent manufacturing. Existing detection methods mainly require massive numbers of defect samples to train the model to detect the defects. Nowadays, inadequate defect samples and labels are inevitably encountered in industrial data environments due to the highly automated and stable production lines escalatingly deployed, causing fewer and fewer defective products to be produced. Consequently, manual interventions are deeply required to analyze the abnormal sample once an unseen defect accidentally emerges that significantly decreases productivity. To this end, this paper proposes a novel few/zero-shot compatible surface defect detection method without requiring massive or even any defect samples to detect surface defects. First, a novel contrastive generator is proposed to use defects’ text descriptions to synthesize “fake” visual features for those rare defects. Then, the synthesized visual features (for support samples) are fused with “real” visual features (for query samples) into a similarity graph to align the relationships between support samples and query samples. After, a class center optimization method is proposed to iteratively update the similarity matrix of the graph to obtain the classification probabilities for the query samples. Eventually, the proposed method solves the problem of the lack of defect samples and the inability of few-shot learning-based methods to recognize unseen classes. Massive experiments on eight fine-grained datasets show that our method gains an average of +8.29% improvements on few-shot recognition tasks and achieves an average of +8.23% improvements on zero-shot recognition tasks compared with the state-of-the-art method. Moreover, the proposed method is deployed in a real-world prototype system, and the method’s feasibility is finally demonstrated. The core code of the proposed method is available at: https://github.com/NDYBSNDY/AsC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想飞的猪完成签到,获得积分10
1秒前
山河表里完成签到,获得积分10
1秒前
congguitar完成签到,获得积分10
1秒前
数据线完成签到,获得积分10
3秒前
iiiau完成签到,获得积分10
3秒前
黄浩文完成签到,获得积分10
3秒前
南边的海完成签到,获得积分10
4秒前
虚心的仙人掌完成签到,获得积分0
4秒前
4秒前
我很好完成签到 ,获得积分10
5秒前
包容的剑完成签到 ,获得积分10
5秒前
汉堡包应助zwf123采纳,获得10
5秒前
空白完成签到,获得积分10
6秒前
南边的海发布了新的文献求助10
7秒前
dd完成签到 ,获得积分10
7秒前
啊哈哈哈哈哈完成签到 ,获得积分10
9秒前
Hello应助燕子采纳,获得10
10秒前
HHHAN完成签到,获得积分10
11秒前
11秒前
Santas完成签到,获得积分10
12秒前
12秒前
不知名网友要某某完成签到,获得积分20
15秒前
所所应助南边的海采纳,获得10
17秒前
爆米花应助南边的海采纳,获得10
17秒前
CipherSage应助南边的海采纳,获得10
17秒前
科研通AI2S应助南边的海采纳,获得10
17秒前
英姑应助南边的海采纳,获得10
17秒前
隐形曼青应助南边的海采纳,获得10
17秒前
脑洞疼应助南边的海采纳,获得10
17秒前
hobowei完成签到 ,获得积分10
19秒前
友好的匪完成签到,获得积分10
20秒前
行云流水完成签到,获得积分10
21秒前
林大侠完成签到,获得积分10
23秒前
欢喜蛋挞发布了新的文献求助10
23秒前
elsa622完成签到 ,获得积分10
25秒前
25秒前
单纯的奇异果完成签到,获得积分10
26秒前
27秒前
xiaodiandian完成签到,获得积分10
28秒前
4652376完成签到 ,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965787
求助须知:如何正确求助?哪些是违规求助? 3511088
关于积分的说明 11156314
捐赠科研通 3245709
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268