亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative and Contrastive Combined Support Sample Synthesis Model for Few/Zero-Shot Surface Defect Recognition

计算机科学 人工智能 模式识别(心理学) 相似性(几何) 样品(材料) 发电机(电路理论) 机器学习 图像(数学) 色谱法 量子力学 物理 功率(物理) 化学
作者
Yuran Dong,Cheng Xie,Luyao Xu,Hongming Cai,Weiming Shen,Hui Tang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2023.3329163
摘要

Surface defect detection is one of the most important vision-based measurements for intelligent manufacturing. Existing detection methods mainly require massive numbers of defect samples to train the model to detect the defects. Nowadays, inadequate defect samples and labels are inevitably encountered in industrial data environments due to the highly automated and stable production lines escalatingly deployed, causing fewer and fewer defective products to be produced. Consequently, manual interventions are deeply required to analyze the abnormal sample once an unseen defect accidentally emerges that significantly decreases productivity. To this end, this paper proposes a novel few/zero-shot compatible surface defect detection method without requiring massive or even any defect samples to detect surface defects. First, a novel contrastive generator is proposed to use defects’ text descriptions to synthesize “fake” visual features for those rare defects. Then, the synthesized visual features (for support samples) are fused with “real” visual features (for query samples) into a similarity graph to align the relationships between support samples and query samples. After, a class center optimization method is proposed to iteratively update the similarity matrix of the graph to obtain the classification probabilities for the query samples. Eventually, the proposed method solves the problem of the lack of defect samples and the inability of few-shot learning-based methods to recognize unseen classes. Massive experiments on eight fine-grained datasets show that our method gains an average of +8.29% improvements on few-shot recognition tasks and achieves an average of +8.23% improvements on zero-shot recognition tasks compared with the state-of-the-art method. Moreover, the proposed method is deployed in a real-world prototype system, and the method’s feasibility is finally demonstrated. The core code of the proposed method is available at: https://github.com/NDYBSNDY/AsC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊力扎提完成签到,获得积分10
7秒前
14秒前
17秒前
18秒前
孙泉发布了新的文献求助10
24秒前
27秒前
33秒前
852应助zslg采纳,获得10
51秒前
59秒前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
zslg发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
如意秋珊完成签到 ,获得积分10
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助30
2分钟前
2分钟前
3分钟前
CodeCraft应助畅快甜瓜采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615