Generative and Contrastive Combined Support Sample Synthesis Model for Few/Zero-Shot Surface Defect Recognition

计算机科学 人工智能 模式识别(心理学) 相似性(几何) 样品(材料) 发电机(电路理论) 机器学习 图像(数学) 色谱法 量子力学 物理 功率(物理) 化学
作者
Yuran Dong,Cheng Xie,Luyao Xu,Hongming Cai,Weiming Shen,Hui Tang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2023.3329163
摘要

Surface defect detection is one of the most important vision-based measurements for intelligent manufacturing. Existing detection methods mainly require massive numbers of defect samples to train the model to detect the defects. Nowadays, inadequate defect samples and labels are inevitably encountered in industrial data environments due to the highly automated and stable production lines escalatingly deployed, causing fewer and fewer defective products to be produced. Consequently, manual interventions are deeply required to analyze the abnormal sample once an unseen defect accidentally emerges that significantly decreases productivity. To this end, this paper proposes a novel few/zero-shot compatible surface defect detection method without requiring massive or even any defect samples to detect surface defects. First, a novel contrastive generator is proposed to use defects’ text descriptions to synthesize “fake” visual features for those rare defects. Then, the synthesized visual features (for support samples) are fused with “real” visual features (for query samples) into a similarity graph to align the relationships between support samples and query samples. After, a class center optimization method is proposed to iteratively update the similarity matrix of the graph to obtain the classification probabilities for the query samples. Eventually, the proposed method solves the problem of the lack of defect samples and the inability of few-shot learning-based methods to recognize unseen classes. Massive experiments on eight fine-grained datasets show that our method gains an average of +8.29% improvements on few-shot recognition tasks and achieves an average of +8.23% improvements on zero-shot recognition tasks compared with the state-of-the-art method. Moreover, the proposed method is deployed in a real-world prototype system, and the method’s feasibility is finally demonstrated. The core code of the proposed method is available at: https://github.com/NDYBSNDY/AsC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ws_WS_完成签到 ,获得积分10
刚刚
高贵宛海完成签到,获得积分10
刚刚
爱静静应助windows采纳,获得10
3秒前
黄橙子完成签到 ,获得积分10
3秒前
4秒前
马前人发布了新的文献求助10
6秒前
xiamovivi完成签到,获得积分10
6秒前
CDabin完成签到,获得积分10
7秒前
谦让的凤灵完成签到,获得积分10
8秒前
zj完成签到,获得积分10
8秒前
小木子发布了新的文献求助10
10秒前
冰子完成签到 ,获得积分10
12秒前
wangwang完成签到,获得积分10
13秒前
111完成签到,获得积分20
13秒前
小赞芽完成签到,获得积分10
14秒前
大鱼完成签到 ,获得积分10
15秒前
Yeah完成签到,获得积分10
15秒前
海风完成签到,获得积分10
16秒前
16秒前
万能图书馆应助小木子采纳,获得10
19秒前
llllzzh完成签到 ,获得积分10
19秒前
迷人的沛山完成签到 ,获得积分10
20秒前
堀江真夏完成签到 ,获得积分10
21秒前
研友_8K2QJZ完成签到,获得积分10
22秒前
内向的青荷完成签到,获得积分10
24秒前
研友_VZG7GZ应助王金宝采纳,获得10
26秒前
数学情缘完成签到,获得积分10
29秒前
34秒前
彪行天下完成签到,获得积分10
34秒前
34秒前
李泽中完成签到,获得积分20
36秒前
康康完成签到 ,获得积分10
36秒前
王金宝发布了新的文献求助10
39秒前
hwen1998完成签到 ,获得积分10
42秒前
1a完成签到 ,获得积分10
44秒前
多喝水我完成签到 ,获得积分10
46秒前
复杂念梦完成签到 ,获得积分10
48秒前
Zurlliant完成签到,获得积分10
48秒前
王金宝关注了科研通微信公众号
48秒前
酷酷的芙发布了新的文献求助10
50秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176