亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative and Contrastive Combined Support Sample Synthesis Model for Few/Zero-Shot Surface Defect Recognition

计算机科学 人工智能 模式识别(心理学) 相似性(几何) 样品(材料) 发电机(电路理论) 机器学习 图像(数学) 色谱法 量子力学 物理 功率(物理) 化学
作者
Yuran Dong,Cheng Xie,Luyao Xu,Hongming Cai,Weiming Shen,Hui Tang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2023.3329163
摘要

Surface defect detection is one of the most important vision-based measurements for intelligent manufacturing. Existing detection methods mainly require massive numbers of defect samples to train the model to detect the defects. Nowadays, inadequate defect samples and labels are inevitably encountered in industrial data environments due to the highly automated and stable production lines escalatingly deployed, causing fewer and fewer defective products to be produced. Consequently, manual interventions are deeply required to analyze the abnormal sample once an unseen defect accidentally emerges that significantly decreases productivity. To this end, this paper proposes a novel few/zero-shot compatible surface defect detection method without requiring massive or even any defect samples to detect surface defects. First, a novel contrastive generator is proposed to use defects’ text descriptions to synthesize “fake” visual features for those rare defects. Then, the synthesized visual features (for support samples) are fused with “real” visual features (for query samples) into a similarity graph to align the relationships between support samples and query samples. After, a class center optimization method is proposed to iteratively update the similarity matrix of the graph to obtain the classification probabilities for the query samples. Eventually, the proposed method solves the problem of the lack of defect samples and the inability of few-shot learning-based methods to recognize unseen classes. Massive experiments on eight fine-grained datasets show that our method gains an average of +8.29% improvements on few-shot recognition tasks and achieves an average of +8.23% improvements on zero-shot recognition tasks compared with the state-of-the-art method. Moreover, the proposed method is deployed in a real-world prototype system, and the method’s feasibility is finally demonstrated. The core code of the proposed method is available at: https://github.com/NDYBSNDY/AsC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的延恶完成签到,获得积分10
1秒前
所所应助郑郑采纳,获得10
9秒前
13秒前
郑郑发布了新的文献求助10
19秒前
tdbjyoung应助李易安采纳,获得10
23秒前
28秒前
29秒前
hhh发布了新的文献求助10
33秒前
batmanrobin完成签到,获得积分10
45秒前
45秒前
luck完成签到,获得积分10
58秒前
糊涂的万发布了新的文献求助10
1分钟前
开霁完成签到 ,获得积分10
1分钟前
惊鸿H完成签到 ,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
糊涂的万完成签到,获得积分10
1分钟前
CodeCraft应助南淮采纳,获得10
1分钟前
zyin发布了新的文献求助10
1分钟前
1分钟前
郎谋完成签到,获得积分10
1分钟前
yy发布了新的文献求助10
1分钟前
1分钟前
yy完成签到,获得积分10
1分钟前
顺利的八宝粥完成签到 ,获得积分20
1分钟前
dmi完成签到,获得积分10
1分钟前
RONG完成签到 ,获得积分10
2分钟前
shentaii完成签到,获得积分10
2分钟前
爆米花应助leo采纳,获得10
2分钟前
缺粥完成签到 ,获得积分10
2分钟前
完美世界应助科研小白采纳,获得10
2分钟前
陈小子完成签到 ,获得积分10
2分钟前
自由的中蓝完成签到 ,获得积分10
2分钟前
2分钟前
bear完成签到 ,获得积分10
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210134
求助须知:如何正确求助?哪些是违规求助? 4387108
关于积分的说明 13662302
捐赠科研通 4246713
什么是DOI,文献DOI怎么找? 2329917
邀请新用户注册赠送积分活动 1327664
关于科研通互助平台的介绍 1280126