Remaining useful life with self-attention assisted physics-informed neural network

预言 可解释性 人工神经网络 模块化设计 人工智能 机制(生物学) 钥匙(锁) 机器学习 计算机科学 计算 预测建模 数据挖掘 工程类 算法 认识论 操作系统 哲学 计算机安全
作者
Xinyuan Liao,Shaowei Chen,Pengfei Wen,Shuai Zhao
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:58: 102195-102195 被引量:17
标识
DOI:10.1016/j.aei.2023.102195
摘要

Remaining useful life (RUL) prediction as the key technique of prognostics and health management (PHM) has been extensively investigated. The application of data-driven methods in RUL prediction has advanced greatly in recent years. However, a large number of model parameters, low prediction accuracy, and lack of interpretability of prediction results are common problems of current data-driven methods. In this paper, we propose a Physics-Informed Neural Networks (PINNs) with Self-Attention mechanism-based hybrid framework for aircraft engine RUL prognostics. Specifically, the self-attention mechanism is employed to learn the differences and interactions between features, and reasonably map high-dimensional features to low-dimensional spaces. Subsequently, PINN is utilized to regularize the end-to-end prediction network, which maps features to RUL. The RUL prediction framework termed AttnPINN has verified its superiority on the Commercial Modular AeroPropulsion System Simulation (C-MAPSS) dataset. It achieves state-of-the-art prediction performance with a small number of parameters, resulting in computation-light features. Furthermore, its prediction results are highly interpretable and can accurately predict failure modes, thereby enabling precise predictive maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助醉人的仔采纳,获得10
1秒前
Relax发布了新的文献求助10
1秒前
元元完成签到,获得积分10
1秒前
liourg应助义气的妙松采纳,获得50
1秒前
星辰大海应助冷艳乐松采纳,获得10
2秒前
2秒前
Hello应助经法采纳,获得10
2秒前
bing完成签到 ,获得积分10
2秒前
3秒前
Jimmy发布了新的文献求助40
3秒前
六六完成签到 ,获得积分10
3秒前
an完成签到,获得积分10
4秒前
寜1完成签到,获得积分10
4秒前
MMM完成签到,获得积分10
4秒前
4秒前
小二郎应助Zhang采纳,获得10
4秒前
斯文的灵雁完成签到,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
Leon应助科研通管家采纳,获得100
5秒前
丘比特应助帅玉玉采纳,获得10
5秒前
明天更好发布了新的文献求助10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
剑兰先生应助科研通管家采纳,获得200
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
随便发布了新的文献求助10
6秒前
kingwill应助科研通管家采纳,获得20
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759