Well-structured V2C MXenes coupled g-C3N4 2D/2D nanohybrids for proficient charge separation with the role of triethanolamine (TEOA) as a protective barrier of g-C3N4 for stimulating photocatalytic H2 production

MXenes公司 三乙醇胺 光催化 化学 光化学 电子转移 制氢 材料科学 催化作用 有机化学 分析化学(期刊)
作者
Areen Sherryna,Muhammad Tahir,Zaki Yamani Zakaria
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 1511-1531 被引量:40
标识
DOI:10.1016/j.ijhydene.2023.09.234
摘要

Vanadium-carbide (V2C) MXenes have received scientific attention for their thinner structure, multiple oxidation states, and excellent conductivity, which can effectively serve as electron-sinking sites to suppress the backward recombination of electrons and holes. Herein, well-structured V2C/g-C3N4 nanohybrids were designed to promote photocatalytic hydrogen production. Stronger interfacial contact between 2D/2D V2C/g-C3N4 proffers 4.23-fold more H2 yield than pristine g-C3N4 with a maximal rate of 360 μmol g−1 h−1. The loading of V2C improves the light absorption capability and facilitates the charge transfer for photo-redox reaction. However, h+ accumulation fosters the degradation kinetics over consecutive cycles, which drives the homolytic cleavage of the g-C3N4 by hydroxyl radical (• OH). The tremendous decline in the photostability test over methanol-containing sacrificial reagents is consistent with the reduction of g-C3N4 functional units, corroborating the structural breaking. Employing TEOA as a hole scavenger slows the homolytic decomposition of g-C3N4, which could act as a binding ligand in protecting the g-C3N4 surface. Stronger intermolecular forces between the heterogeneous molecules with excellent scavenging activity effectively trap accumulated h+ and slow down the degradation kinetics. The findings of this work not only contribute to the scientific understanding of vanadium-based MXenes in photocatalytic hydrogen production but also lay the foundation for understanding the mechanistic structure of g-C3N4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
demo完成签到,获得积分10
1秒前
橘栀完成签到,获得积分10
1秒前
3秒前
Owen应助难过的谷芹采纳,获得10
4秒前
4秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
池洲应助科研通管家采纳,获得10
5秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
危机的阁应助科研通管家采纳,获得30
6秒前
子昂应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
池洲应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
危机的阁应助科研通管家采纳,获得30
7秒前
7秒前
子昂应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
HOAN应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
左丘以云完成签到,获得积分10
7秒前
危机的阁应助科研通管家采纳,获得30
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044