Identification and validation of a novel NK cells-related signature to predict prognosis and immune microenvironment in LUAD

列线图 免疫系统 基因签名 生物 肿瘤科 比例危险模型 计算生物学 基因 癌症研究 免疫学 内科学 医学 基因表达 遗传学
作者
Chenghu Song,Weici Liu,Guanyu Jiang,Zuyuan He,Ruixin Wang,Xiaokun Wang,Ruo Chen,Wenjun Mao,Shaojin Zhu
出处
期刊:Immunobiology [Elsevier]
卷期号:228 (6): 152751-152751
标识
DOI:10.1016/j.imbio.2023.152751
摘要

The prevalence and fatality rates of lung cancer are experiencing a rapid escalation. Natural Killer (NK) cells have been established to have a crucial role in both tumor initiation and progression. Nevertheless, uncertainties persist regarding their precise implications in the prognosis of LUAD. The data were obtained from reputable sources, such as the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) database, and our internally generated sequencing data. Utilizing the TCGA data as a background, we selected intersecting genes, validated by cluster analysis, to establish a Cox model and validated it using the GEO datasets. Furthermore, we conducted extensive analyses to investigate the significance of potential biomarkers in relation to immune cell infiltration, single-cell data, differential gene expression, and drug sensitivity. 67 immune-related genes associated with NK cells (NK-IRGs) were identified in the TCGA datasets, whose research potential was demonstrated by cluster analysis. A prognostic signature was identified utilizing the univariate and multivariate Cox model, resulting in the identification of five genes, which was validated using GEO datasets. Additionally, the nomogram's calibration curve demonstrated exceptional concordance between the projected and actual survival rates. Subsequent investigations uncovered that this prognostic signature demonstrated its independence as a risk factor. Notably, in the low-risk group, NK cells exhibited elevated levels of immune checkpoint molecules, indicating heightened sensitivity to immune therapy. These findings highlight the potential of utilizing this signature as a valuable tool in the selection of patients who could benefit from targeted immune interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
KK完成签到 ,获得积分10
1秒前
你好啊发布了新的文献求助10
2秒前
yanxuhuan完成签到,获得积分10
2秒前
学术通zzz完成签到,获得积分10
3秒前
搜集达人应助凛冬采纳,获得10
4秒前
Cher1she完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
小马甲应助你好啊采纳,获得10
9秒前
CipherSage应助don采纳,获得10
9秒前
单薄的金鱼完成签到,获得积分10
9秒前
元谷雪应助pangpang采纳,获得10
11秒前
科研通AI2S应助漂亮的素采纳,获得10
11秒前
13秒前
情怀应助唐帅采纳,获得10
15秒前
柿柿发布了新的文献求助10
15秒前
科研通AI2S应助mrcat采纳,获得10
18秒前
LRxxx发布了新的文献求助10
23秒前
dadii发布了新的文献求助10
23秒前
烂漫念文完成签到,获得积分10
24秒前
24秒前
星辰大海应助李浅墨采纳,获得10
25秒前
宁静致远完成签到,获得积分10
25秒前
柿柿完成签到,获得积分10
25秒前
科研通AI2S应助单薄的金鱼采纳,获得10
26秒前
GAO完成签到,获得积分10
29秒前
大分子完成签到,获得积分10
29秒前
30秒前
Estrella应助LFY采纳,获得10
33秒前
唐帅完成签到,获得积分20
33秒前
苦我心志完成签到,获得积分10
33秒前
Nnn完成签到,获得积分10
34秒前
34秒前
physlicl发布了新的文献求助10
36秒前
36秒前
我要发论文完成签到,获得积分10
37秒前
清秀黑夜完成签到,获得积分10
38秒前
李健的小迷弟应助Falling采纳,获得10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790837
关于积分的说明 7796725
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301727
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194