Hidformer: Hierarchical dual-tower transformer using multi-scale mergence for long-term time series forecasting

计算机科学 变压器 合并(版本控制) 人工智能 机器学习 电压 情报检索 量子力学 物理
作者
Zhaoran Liu,Yizhi Cao,Hu Xu,Yuxin Huang,Qunshan He,Xinjie Chen,Xiaoyu Tang,Xinggao Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122412-122412 被引量:27
标识
DOI:10.1016/j.eswa.2023.122412
摘要

Long-term time series forecasting has received a lot of popularity because of its great practicality. It is also an extremely challenging task since it requires using limited observations to predict values in the long future accurately. Recent works have demonstrated that Transformer has strong potential for this task. However, the permutation-invariant property of the Transformer and some other prominent shortcomings in the current Transformer-based models, such as missing multi-scale local features and information from the frequency domain, significantly limit their performance. To improve the accuracy of the long-term time series forecasting, we propose a Transformer-based model called Hidformer. This model can either learn temporal dynamics from the time domain or discover particular patterns from the frequency domain. We also design a segment-and-merge architecture to provide semantic meanings for the inputs and help the model capture multi-scale local features. Besides, we replace Transformer's multi-head attention with highly-efficient recurrence and linear attention, which gives our model an advantage over other Transformer-based models in terms of computational efficiency. Extensive experiments are conducted on seven real-world benchmarks to verify the effectiveness of Hidformer. The experimental results show that Hidformer achieves 72 top-1 and 69 top-2 scores out of 88 configurations. It dramatically improves the prediction accuracy and outperforms the previous state-of-the-art, proving the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XU徐发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
顺利毕业发布了新的文献求助10
2秒前
2秒前
2秒前
漫游完成签到,获得积分10
2秒前
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
快乐的厉完成签到,获得积分10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Twonej应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
稳重峻熙完成签到,获得积分10
5秒前
彭于晏应助优美紫槐采纳,获得10
5秒前
orixero应助JamesYang采纳,获得10
6秒前
8秒前
Akim应助XX采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
月来越好应助科研力力采纳,获得10
10秒前
xiaoya发布了新的文献求助10
10秒前
12秒前
12秒前
qq完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420