Hidformer: Hierarchical dual-tower transformer using multi-scale mergence for long-term time series forecasting

计算机科学 变压器 合并(版本控制) 人工智能 机器学习 电压 情报检索 量子力学 物理
作者
Zhaoran Liu,Yizhi Cao,Hu Xu,Yuxin Huang,Qunshan He,Xinjie Chen,Xiaoyu Tang,Xinggao Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122412-122412 被引量:27
标识
DOI:10.1016/j.eswa.2023.122412
摘要

Long-term time series forecasting has received a lot of popularity because of its great practicality. It is also an extremely challenging task since it requires using limited observations to predict values in the long future accurately. Recent works have demonstrated that Transformer has strong potential for this task. However, the permutation-invariant property of the Transformer and some other prominent shortcomings in the current Transformer-based models, such as missing multi-scale local features and information from the frequency domain, significantly limit their performance. To improve the accuracy of the long-term time series forecasting, we propose a Transformer-based model called Hidformer. This model can either learn temporal dynamics from the time domain or discover particular patterns from the frequency domain. We also design a segment-and-merge architecture to provide semantic meanings for the inputs and help the model capture multi-scale local features. Besides, we replace Transformer's multi-head attention with highly-efficient recurrence and linear attention, which gives our model an advantage over other Transformer-based models in terms of computational efficiency. Extensive experiments are conducted on seven real-world benchmarks to verify the effectiveness of Hidformer. The experimental results show that Hidformer achieves 72 top-1 and 69 top-2 scores out of 88 configurations. It dramatically improves the prediction accuracy and outperforms the previous state-of-the-art, proving the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joyce给Joyce的求助进行了留言
刚刚
导儿能不能上个院士完成签到,获得积分10
刚刚
刚刚
丘比特应助瓦洛佳小神采纳,获得10
刚刚
az发布了新的文献求助10
1秒前
炳楷完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
gege完成签到,获得积分10
1秒前
一只猪发布了新的文献求助20
2秒前
Yy完成签到,获得积分10
2秒前
研友_VZG7GZ应助biudungdung采纳,获得10
2秒前
3秒前
Qinqinasm完成签到,获得积分10
3秒前
Bonfire发布了新的文献求助10
3秒前
多多完成签到,获得积分20
3秒前
3秒前
maomao完成签到,获得积分10
4秒前
小鱼儿完成签到,获得积分10
4秒前
4秒前
4秒前
潘世林完成签到,获得积分10
5秒前
腼腆的梦蕊完成签到 ,获得积分10
5秒前
5秒前
绿狗玩偶发布了新的文献求助10
5秒前
Lucas应助布吉岛呀采纳,获得10
6秒前
7秒前
雪影完成签到 ,获得积分10
7秒前
nlzza完成签到 ,获得积分10
8秒前
ma化疼没木完成签到,获得积分10
8秒前
王思甜发布了新的文献求助10
8秒前
太阳能之子完成签到,获得积分10
8秒前
9秒前
9秒前
sihaibo完成签到,获得积分10
9秒前
咩咩完成签到 ,获得积分10
9秒前
酷炫的冷梅关注了科研通微信公众号
9秒前
乐观发布了新的文献求助10
9秒前
666完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659101
求助须知:如何正确求助?哪些是违规求助? 4825945
关于积分的说明 15085232
捐赠科研通 4817760
什么是DOI,文献DOI怎么找? 2578352
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491722