Hidformer: Hierarchical dual-tower transformer using multi-scale mergence for long-term time series forecasting

计算机科学 变压器 合并(版本控制) 人工智能 机器学习 电压 情报检索 量子力学 物理
作者
Zhaoran Liu,Yizhi Cao,Hu Xu,Yuxin Huang,Qunshan He,Xinjie Chen,Xiaoyu Tang,Xinggao Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122412-122412 被引量:27
标识
DOI:10.1016/j.eswa.2023.122412
摘要

Long-term time series forecasting has received a lot of popularity because of its great practicality. It is also an extremely challenging task since it requires using limited observations to predict values in the long future accurately. Recent works have demonstrated that Transformer has strong potential for this task. However, the permutation-invariant property of the Transformer and some other prominent shortcomings in the current Transformer-based models, such as missing multi-scale local features and information from the frequency domain, significantly limit their performance. To improve the accuracy of the long-term time series forecasting, we propose a Transformer-based model called Hidformer. This model can either learn temporal dynamics from the time domain or discover particular patterns from the frequency domain. We also design a segment-and-merge architecture to provide semantic meanings for the inputs and help the model capture multi-scale local features. Besides, we replace Transformer's multi-head attention with highly-efficient recurrence and linear attention, which gives our model an advantage over other Transformer-based models in terms of computational efficiency. Extensive experiments are conducted on seven real-world benchmarks to verify the effectiveness of Hidformer. The experimental results show that Hidformer achieves 72 top-1 and 69 top-2 scores out of 88 configurations. It dramatically improves the prediction accuracy and outperforms the previous state-of-the-art, proving the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Richard完成签到,获得积分10
1秒前
XZZ完成签到 ,获得积分10
1秒前
4秒前
刀剑完成签到,获得积分20
5秒前
zzzxhhr完成签到,获得积分10
5秒前
希望天下0贩的0应助wuyu采纳,获得10
5秒前
HanhanNing完成签到,获得积分10
6秒前
天真稀完成签到,获得积分10
7秒前
penghuiye完成签到,获得积分10
9秒前
10秒前
友好的小鸽子完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
正直的如凡完成签到,获得积分10
13秒前
luckweb完成签到 ,获得积分10
14秒前
Owen应助辛勤凝丝采纳,获得10
14秒前
麦麦发布了新的文献求助10
15秒前
zkyyinf_zero发布了新的文献求助10
15秒前
搜集达人应助gecumk采纳,获得10
16秒前
欣喜的秋莲完成签到,获得积分10
16秒前
空城旧梦发布了新的文献求助10
17秒前
17秒前
wuyu发布了新的文献求助10
17秒前
ssss完成签到,获得积分20
17秒前
suiwuya完成签到,获得积分10
18秒前
18秒前
黄景滨完成签到 ,获得积分10
19秒前
19秒前
小小完成签到 ,获得积分10
20秒前
blueblue完成签到,获得积分10
21秒前
21秒前
空城旧梦完成签到,获得积分20
22秒前
陈辉发布了新的文献求助10
23秒前
RONG完成签到 ,获得积分10
24秒前
谨慎傲晴完成签到,获得积分20
27秒前
27秒前
好运莲莲发布了新的文献求助10
27秒前
28秒前
潇洒的诗桃完成签到,获得积分0
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565388
求助须知:如何正确求助?哪些是违规求助? 4650379
关于积分的说明 14690990
捐赠科研通 4592263
什么是DOI,文献DOI怎么找? 2519544
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199