已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hidformer: Hierarchical dual-tower transformer using multi-scale mergence for long-term time series forecasting

计算机科学 变压器 合并(版本控制) 人工智能 机器学习 电压 物理 量子力学 情报检索
作者
Zhaoran Liu,Yizhi Cao,Hu Xu,Yuxin Huang,Qunshan He,Xinjie Chen,Xiaoyu Tang,Xinggao Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122412-122412 被引量:27
标识
DOI:10.1016/j.eswa.2023.122412
摘要

Long-term time series forecasting has received a lot of popularity because of its great practicality. It is also an extremely challenging task since it requires using limited observations to predict values in the long future accurately. Recent works have demonstrated that Transformer has strong potential for this task. However, the permutation-invariant property of the Transformer and some other prominent shortcomings in the current Transformer-based models, such as missing multi-scale local features and information from the frequency domain, significantly limit their performance. To improve the accuracy of the long-term time series forecasting, we propose a Transformer-based model called Hidformer. This model can either learn temporal dynamics from the time domain or discover particular patterns from the frequency domain. We also design a segment-and-merge architecture to provide semantic meanings for the inputs and help the model capture multi-scale local features. Besides, we replace Transformer's multi-head attention with highly-efficient recurrence and linear attention, which gives our model an advantage over other Transformer-based models in terms of computational efficiency. Extensive experiments are conducted on seven real-world benchmarks to verify the effectiveness of Hidformer. The experimental results show that Hidformer achieves 72 top-1 and 69 top-2 scores out of 88 configurations. It dramatically improves the prediction accuracy and outperforms the previous state-of-the-art, proving the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助deway采纳,获得30
1秒前
3秒前
花生王子发布了新的文献求助10
4秒前
岳小龙完成签到 ,获得积分10
6秒前
WHsE完成签到 ,获得积分10
8秒前
newplayer完成签到,获得积分10
8秒前
昏睡的芒果完成签到,获得积分10
8秒前
9秒前
老阎应助务实的寻凝采纳,获得30
12秒前
Sophia完成签到 ,获得积分10
12秒前
ZhaoY完成签到,获得积分10
13秒前
14秒前
上官若男应助叶香菱采纳,获得10
15秒前
iris完成签到,获得积分20
16秒前
17秒前
清新的沛蓝完成签到,获得积分10
21秒前
LLc完成签到 ,获得积分10
22秒前
shuicaoxi完成签到,获得积分10
23秒前
Taro发布了新的文献求助10
23秒前
25秒前
yangxu发布了新的文献求助20
26秒前
书文混四方完成签到 ,获得积分10
26秒前
28秒前
29秒前
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
林洁佳发布了新的文献求助10
32秒前
34秒前
噪先森完成签到,获得积分20
36秒前
充电宝应助ozh采纳,获得10
38秒前
39秒前
40秒前
若修发布了新的文献求助10
42秒前
43秒前
43秒前
li发布了新的文献求助10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4994344
求助须知:如何正确求助?哪些是违规求助? 4241931
关于积分的说明 13215274
捐赠科研通 4037464
什么是DOI,文献DOI怎么找? 2209095
邀请新用户注册赠送积分活动 1219913
关于科研通互助平台的介绍 1138472