Three-way fusion measures and three-level feature selections based on neighborhood decision systems

粒度 计算机科学 单调函数 特征(语言学) 特征选择 人工智能 规范化(社会学) 代数数 机器学习 启发式 度量(数据仓库) 数据挖掘 算法 数学 数学分析 语言学 哲学 社会学 人类学 操作系统
作者
Hongyuan Gou,Xianyong Zhang,Jilin Yang,Zhiying Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110842-110842 被引量:5
标识
DOI:10.1016/j.asoc.2023.110842
摘要

Uncertainty measures exhibit algebraic and informational perspectives, and the two-view measure integration facilitates feature selections in classification learning. According to neighborhood decision systems (NDSs), two basic algorithms of feature selections (called JE-FS and DE-FS) already exist by using joint and decisional entropies, respectively, but they have advancement space for informationally fusing algebraic measures. In this paper on NDSs, three-way fusion measures are systematically constructed by combining three-way algebraic and informational measures, and thus three-level feature selections are hierarchically investigated by using corresponding monotonic and nonmonotonic measures and strategies. At first, the accuracy, granularity, and composite granularity-accuracy constitute three-way algebraic measures, while the joint, conditional, and decisional entropies (JE, CE, DE) formulate three-way informational measures. Then, three-way algebraic and informational measures are combined via normalization and multiplication, so three-way fusion measures based on JE, CE, DE are established. These new measures acquire granulation monotonicity and nonmonotonicity. Furthermore by relevant measures and monotonicity/nonmonotonicity, three-level feature selections (with null, single, and double fusion levels) related to JE, CE, DE are proposed, and corresponding heuristic algorithms are designed by monotonic and nonmonotonic principles. 4×3=12 selection algorithms comprehensively emerge, and they extend and improve current JE-FS and DE-FS. Finally by data experiments, related uncertainty measures and granulation properties are validated, and all 12 selection algorithms are compared in classification learning. As a result, new algorithms outperform JE-FS and DE-FS for classification performance, and the algorithmic improvements accord with the fusion-hierarchical deepening and entropy-systematic development of uncertainty measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSSSscoliosis发布了新的文献求助10
刚刚
刚刚
bkagyin应助pp陶采纳,获得10
3秒前
YUKI发布了新的文献求助10
5秒前
Eason完成签到,获得积分10
5秒前
5秒前
8秒前
8秒前
11完成签到 ,获得积分10
9秒前
11秒前
12秒前
大模型应助YUKI采纳,获得10
12秒前
13秒前
13秒前
天天快乐应助墨墨采纳,获得10
15秒前
chen完成签到,获得积分10
16秒前
思源应助enen采纳,获得30
16秒前
93发布了新的文献求助10
16秒前
真实的一鸣完成签到,获得积分10
16秒前
司瑛士应助17835152738采纳,获得10
16秒前
hhl完成签到,获得积分10
18秒前
20秒前
搭碰完成签到,获得积分10
20秒前
典雅雨寒发布了新的文献求助10
20秒前
cly3397发布了新的文献求助10
21秒前
学术混子完成签到,获得积分10
23秒前
25秒前
8R60d8应助mostspecial采纳,获得10
29秒前
dididi发布了新的文献求助10
30秒前
郭郭完成签到 ,获得积分10
30秒前
沉默寻凝完成签到,获得积分10
31秒前
pjs发布了新的文献求助10
31秒前
33秒前
EvolDog完成签到,获得积分20
33秒前
34秒前
34秒前
木光完成签到,获得积分20
34秒前
牧尔芙完成签到 ,获得积分10
35秒前
神介.Tzx发布了新的文献求助10
35秒前
月月完成签到 ,获得积分10
36秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053642
求助须知:如何正确求助?哪些是违规求助? 2710842
关于积分的说明 7423746
捐赠科研通 2355391
什么是DOI,文献DOI怎么找? 1247143
科研通“疑难数据库(出版商)”最低求助积分说明 606239
版权声明 595992