Three-way fusion measures and three-level feature selections based on neighborhood decision systems

粒度 计算机科学 单调函数 特征(语言学) 特征选择 人工智能 规范化(社会学) 代数数 机器学习 启发式 度量(数据仓库) 数据挖掘 算法 数学 数学分析 语言学 哲学 社会学 人类学 操作系统
作者
Hongyuan Gou,Xianyong Zhang,Jilin Yang,Zhiying Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110842-110842 被引量:5
标识
DOI:10.1016/j.asoc.2023.110842
摘要

Uncertainty measures exhibit algebraic and informational perspectives, and the two-view measure integration facilitates feature selections in classification learning. According to neighborhood decision systems (NDSs), two basic algorithms of feature selections (called JE-FS and DE-FS) already exist by using joint and decisional entropies, respectively, but they have advancement space for informationally fusing algebraic measures. In this paper on NDSs, three-way fusion measures are systematically constructed by combining three-way algebraic and informational measures, and thus three-level feature selections are hierarchically investigated by using corresponding monotonic and nonmonotonic measures and strategies. At first, the accuracy, granularity, and composite granularity-accuracy constitute three-way algebraic measures, while the joint, conditional, and decisional entropies (JE, CE, DE) formulate three-way informational measures. Then, three-way algebraic and informational measures are combined via normalization and multiplication, so three-way fusion measures based on JE, CE, DE are established. These new measures acquire granulation monotonicity and nonmonotonicity. Furthermore by relevant measures and monotonicity/nonmonotonicity, three-level feature selections (with null, single, and double fusion levels) related to JE, CE, DE are proposed, and corresponding heuristic algorithms are designed by monotonic and nonmonotonic principles. 4×3=12 selection algorithms comprehensively emerge, and they extend and improve current JE-FS and DE-FS. Finally by data experiments, related uncertainty measures and granulation properties are validated, and all 12 selection algorithms are compared in classification learning. As a result, new algorithms outperform JE-FS and DE-FS for classification performance, and the algorithmic improvements accord with the fusion-hierarchical deepening and entropy-systematic development of uncertainty measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助kikkikPCY采纳,获得10
刚刚
whale完成签到,获得积分10
2秒前
标致书本发布了新的文献求助10
3秒前
SHARK发布了新的文献求助10
4秒前
李爱国应助合适的听白采纳,获得10
4秒前
搜集达人应助复杂的绮兰采纳,获得10
5秒前
思源应助LJQ采纳,获得10
5秒前
6秒前
慕青应助迅速的冰海采纳,获得10
7秒前
7秒前
C_完成签到,获得积分10
8秒前
研0种牛马发布了新的文献求助10
8秒前
yao完成签到,获得积分10
10秒前
11秒前
lllllkkkj完成签到,获得积分10
11秒前
12秒前
12秒前
余德熙发布了新的文献求助10
12秒前
12秒前
13秒前
哈密瓜完成签到,获得积分10
14秒前
77777完成签到,获得积分20
15秒前
15秒前
烟花应助体贴的小天鹅采纳,获得10
15秒前
自觉元霜完成签到,获得积分10
16秒前
陈豆豆发布了新的文献求助10
17秒前
17秒前
勤奋的大便发布了新的文献求助150
17秒前
量子星尘发布了新的文献求助10
18秒前
qqqqqq完成签到,获得积分10
20秒前
茜你亦首歌完成签到,获得积分10
20秒前
洛城l发布了新的文献求助10
20秒前
chouchou完成签到,获得积分10
21秒前
传奇3应助陈豆豆采纳,获得10
21秒前
飞飞鱼完成签到 ,获得积分10
22秒前
Jankin发布了新的文献求助10
23秒前
欢呼的傲旋完成签到,获得积分10
25秒前
CipherSage应助mo采纳,获得30
25秒前
25秒前
无情静柏完成签到 ,获得积分20
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093