Three-way fusion measures and three-level feature selections based on neighborhood decision systems

粒度 计算机科学 单调函数 特征(语言学) 特征选择 人工智能 规范化(社会学) 代数数 机器学习 启发式 度量(数据仓库) 数据挖掘 算法 数学 数学分析 语言学 哲学 社会学 人类学 操作系统
作者
Hongyuan Gou,Xianyong Zhang,Jilin Yang,Zhiying Lv
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110842-110842 被引量:5
标识
DOI:10.1016/j.asoc.2023.110842
摘要

Uncertainty measures exhibit algebraic and informational perspectives, and the two-view measure integration facilitates feature selections in classification learning. According to neighborhood decision systems (NDSs), two basic algorithms of feature selections (called JE-FS and DE-FS) already exist by using joint and decisional entropies, respectively, but they have advancement space for informationally fusing algebraic measures. In this paper on NDSs, three-way fusion measures are systematically constructed by combining three-way algebraic and informational measures, and thus three-level feature selections are hierarchically investigated by using corresponding monotonic and nonmonotonic measures and strategies. At first, the accuracy, granularity, and composite granularity-accuracy constitute three-way algebraic measures, while the joint, conditional, and decisional entropies (JE, CE, DE) formulate three-way informational measures. Then, three-way algebraic and informational measures are combined via normalization and multiplication, so three-way fusion measures based on JE, CE, DE are established. These new measures acquire granulation monotonicity and nonmonotonicity. Furthermore by relevant measures and monotonicity/nonmonotonicity, three-level feature selections (with null, single, and double fusion levels) related to JE, CE, DE are proposed, and corresponding heuristic algorithms are designed by monotonic and nonmonotonic principles. 4×3=12 selection algorithms comprehensively emerge, and they extend and improve current JE-FS and DE-FS. Finally by data experiments, related uncertainty measures and granulation properties are validated, and all 12 selection algorithms are compared in classification learning. As a result, new algorithms outperform JE-FS and DE-FS for classification performance, and the algorithmic improvements accord with the fusion-hierarchical deepening and entropy-systematic development of uncertainty measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助无限雪糕采纳,获得10
1秒前
丘比特应助晴空万里采纳,获得10
1秒前
量子星尘发布了新的文献求助20
4秒前
4秒前
stitch完成签到,获得积分10
5秒前
spacetime发布了新的文献求助10
5秒前
5秒前
冷傲书萱应助哈哈哈采纳,获得10
6秒前
6秒前
乐唔完成签到,获得积分10
6秒前
Brosen给Brosen的求助进行了留言
6秒前
7秒前
8秒前
9秒前
哭泣的雪巧完成签到,获得积分20
9秒前
Jasper应助同志采纳,获得10
10秒前
11秒前
清清清完成签到 ,获得积分10
11秒前
啦啦完成签到 ,获得积分10
13秒前
孔wj完成签到,获得积分10
14秒前
JJMM发布了新的文献求助10
14秒前
Syun完成签到,获得积分10
17秒前
19秒前
搜集达人应助机智谷蕊采纳,获得10
20秒前
感动芷珊完成签到 ,获得积分10
20秒前
传奇3应助spacetime采纳,获得10
21秒前
qinjiayin完成签到,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助100
23秒前
24秒前
leey发布了新的文献求助10
24秒前
好久不见关注了科研通微信公众号
25秒前
雨碎寒江发布了新的文献求助10
27秒前
28秒前
30秒前
我是特种兵应助Ulysses采纳,获得50
30秒前
科研小白完成签到,获得积分10
32秒前
Medneuron发布了新的文献求助50
34秒前
ZQ完成签到,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914910
求助须知:如何正确求助?哪些是违规求助? 4189107
关于积分的说明 13009918
捐赠科研通 3958099
什么是DOI,文献DOI怎么找? 2170084
邀请新用户注册赠送积分活动 1188316
关于科研通互助平台的介绍 1096015