DS-YOLOv8-Based Object Detection Method for Remote Sensing Images

计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 光学(聚焦) 频道(广播) 卷积神经网络 模式识别(心理学) 骨干网 目标检测 领域(数学) 计算机视觉 人工神经网络 数学 电信 哲学 语言学 物理 纯数学 光学
作者
Lingyun Shen,Baihe Lang,Zhengxun Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 125122-125137 被引量:15
标识
DOI:10.1109/access.2023.3330844
摘要

The improved YOLOv8 model (DCN_C2f+SC_SA+YOLOv8, hereinafter referred to as DS-YOLOv8) is proposed to address object detection challenges in complex remote sensing image tasks. It aims to overcome limitations such as the restricted receptive field caused by fixed convolutional kernels in the YOLO backbone network and the inadequate multi-scale feature learning capabilities resulting from the spatial and channel attention fusion mechanism’s inability to adapt to the input data’s feature distribution. The DS-YOLOv8 model introduces the Deformable Convolution C2f (DCN_C2f) module in the backbone network to enable adaptive adjustment of the network’s receptive field. Additionally, a lightweight Self-Calibrating Shuffle Attention (SC_SA) module is designed for spatial and channel attention mechanisms. This design choice allows for adaptive encoding of contextual information, preventing the loss of feature details caused by convolution iterations and improving the representation capability of multi-scale, occluded, and small object features. Moreover, the DS-YOLOv8 model incorporates the dynamic non-monotonic focus mechanism of Wise-IoU and employs a position regression loss function to further enhance its performance. Experimental results demonstrate the excellent performance of the DS-YOLOv8 model on various public datasets, including RSOD, NWPU VHR-10, DIOR, and VEDAI. The average mAP@0.5 values achieved are 97.7%, 92.9%, 89.7%, and 78.9%, respectively. Similarly, the average mAP@0.5:0.95 values are observed to be 74.0%, 64.3%, 70.7%, and 51.1%. Importantly, the model maintains real-time inference capabilities. In comparison to the YOLOv8 series models, the DS-YOLOv8 model demonstrates significant performance improvements and outperforms other mainstream models in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyp7028完成签到,获得积分10
刚刚
王孝松发布了新的文献求助10
1秒前
陈昭琼发布了新的文献求助10
1秒前
研友_VZG64n完成签到,获得积分10
1秒前
LIUY发布了新的文献求助10
1秒前
enen发布了新的文献求助10
2秒前
2秒前
2秒前
清韵微风完成签到,获得积分10
2秒前
雨晴发布了新的文献求助10
3秒前
Jasper应助uu白采纳,获得10
4秒前
4秒前
化身孤岛的鲸完成签到 ,获得积分10
4秒前
Duha完成签到,获得积分10
5秒前
5秒前
5秒前
上上签完成签到,获得积分10
5秒前
醉熏的雁完成签到 ,获得积分10
6秒前
情怀应助Gao采纳,获得10
6秒前
NanNan626发布了新的文献求助10
6秒前
6秒前
杭紫雪完成签到,获得积分10
6秒前
Re完成签到,获得积分10
6秒前
温柔的中蓝完成签到,获得积分10
6秒前
Akim应助暴躁的小蘑菇采纳,获得10
7秒前
懒羊羊完成签到,获得积分10
7秒前
繁荣的凡双完成签到,获得积分10
7秒前
momo完成签到,获得积分10
7秒前
8秒前
科研通AI6应助笑傲江湖采纳,获得30
8秒前
量子星尘发布了新的文献求助10
8秒前
mingxuan完成签到,获得积分10
9秒前
《子非鱼》完成签到,获得积分10
9秒前
cccc完成签到,获得积分10
9秒前
浮游应助Benliu采纳,获得10
9秒前
10秒前
benbenx完成签到,获得积分10
10秒前
Loooong应助猕猴桃采纳,获得10
10秒前
希望天下0贩的0应助xie采纳,获得10
10秒前
李林鑫完成签到 ,获得积分10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778