DS-YOLOv8-Based Object Detection Method for Remote Sensing Images

计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 光学(聚焦) 频道(广播) 卷积神经网络 模式识别(心理学) 骨干网 目标检测 领域(数学) 计算机视觉 人工神经网络 数学 电信 物理 哲学 光学 纯数学 语言学
作者
Lingyun Shen,Baihe Lang,Zhengxun Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 125122-125137 被引量:15
标识
DOI:10.1109/access.2023.3330844
摘要

The improved YOLOv8 model (DCN_C2f+SC_SA+YOLOv8, hereinafter referred to as DS-YOLOv8) is proposed to address object detection challenges in complex remote sensing image tasks. It aims to overcome limitations such as the restricted receptive field caused by fixed convolutional kernels in the YOLO backbone network and the inadequate multi-scale feature learning capabilities resulting from the spatial and channel attention fusion mechanism’s inability to adapt to the input data’s feature distribution. The DS-YOLOv8 model introduces the Deformable Convolution C2f (DCN_C2f) module in the backbone network to enable adaptive adjustment of the network’s receptive field. Additionally, a lightweight Self-Calibrating Shuffle Attention (SC_SA) module is designed for spatial and channel attention mechanisms. This design choice allows for adaptive encoding of contextual information, preventing the loss of feature details caused by convolution iterations and improving the representation capability of multi-scale, occluded, and small object features. Moreover, the DS-YOLOv8 model incorporates the dynamic non-monotonic focus mechanism of Wise-IoU and employs a position regression loss function to further enhance its performance. Experimental results demonstrate the excellent performance of the DS-YOLOv8 model on various public datasets, including RSOD, NWPU VHR-10, DIOR, and VEDAI. The average mAP@0.5 values achieved are 97.7%, 92.9%, 89.7%, and 78.9%, respectively. Similarly, the average mAP@0.5:0.95 values are observed to be 74.0%, 64.3%, 70.7%, and 51.1%. Importantly, the model maintains real-time inference capabilities. In comparison to the YOLOv8 series models, the DS-YOLOv8 model demonstrates significant performance improvements and outperforms other mainstream models in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丰知然应助科研通管家采纳,获得10
2秒前
静默向上完成签到,获得积分10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
丰知然应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
嘉心糖应助科研通管家采纳,获得30
2秒前
丰知然应助科研通管家采纳,获得10
2秒前
杳鸢应助科研通管家采纳,获得20
2秒前
咚咚应助科研通管家采纳,获得10
2秒前
杳鸢应助科研通管家采纳,获得20
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
高挑的外绣应助啥东西啥采纳,获得30
3秒前
与你同在123完成签到,获得积分10
4秒前
lalalala发布了新的文献求助10
4秒前
逢投必中发布了新的文献求助10
6秒前
hybbbb发布了新的文献求助10
10秒前
1234567890发布了新的文献求助10
16秒前
大糖糕僧完成签到,获得积分10
16秒前
852应助自信小天鹅采纳,获得10
17秒前
hybbbb完成签到,获得积分10
18秒前
19秒前
离拾完成签到,获得积分10
19秒前
李爱国应助Brain采纳,获得10
20秒前
bkagyin应助zg采纳,获得10
22秒前
Jasper应助无心的电话采纳,获得30
23秒前
26秒前
28秒前
29秒前
12发布了新的文献求助10
31秒前
慕容半邪发布了新的文献求助10
32秒前
一一发布了新的文献求助10
32秒前
32秒前
wang5945发布了新的文献求助10
32秒前
33秒前
34秒前
35秒前
活泼的雪枫完成签到,获得积分20
35秒前
yar举报不吃脑花求助涉嫌违规
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316704
求助须知:如何正确求助?哪些是违规求助? 2948473
关于积分的说明 8540804
捐赠科研通 2624359
什么是DOI,文献DOI怎么找? 1436100
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724