DS-YOLOv8-Based Object Detection Method for Remote Sensing Images

计算机科学 特征(语言学) 卷积(计算机科学) 人工智能 光学(聚焦) 频道(广播) 卷积神经网络 模式识别(心理学) 骨干网 目标检测 领域(数学) 计算机视觉 人工神经网络 数学 电信 哲学 语言学 物理 纯数学 光学
作者
Lingyun Shen,Baihe Lang,Zhengxun Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 125122-125137 被引量:15
标识
DOI:10.1109/access.2023.3330844
摘要

The improved YOLOv8 model (DCN_C2f+SC_SA+YOLOv8, hereinafter referred to as DS-YOLOv8) is proposed to address object detection challenges in complex remote sensing image tasks. It aims to overcome limitations such as the restricted receptive field caused by fixed convolutional kernels in the YOLO backbone network and the inadequate multi-scale feature learning capabilities resulting from the spatial and channel attention fusion mechanism’s inability to adapt to the input data’s feature distribution. The DS-YOLOv8 model introduces the Deformable Convolution C2f (DCN_C2f) module in the backbone network to enable adaptive adjustment of the network’s receptive field. Additionally, a lightweight Self-Calibrating Shuffle Attention (SC_SA) module is designed for spatial and channel attention mechanisms. This design choice allows for adaptive encoding of contextual information, preventing the loss of feature details caused by convolution iterations and improving the representation capability of multi-scale, occluded, and small object features. Moreover, the DS-YOLOv8 model incorporates the dynamic non-monotonic focus mechanism of Wise-IoU and employs a position regression loss function to further enhance its performance. Experimental results demonstrate the excellent performance of the DS-YOLOv8 model on various public datasets, including RSOD, NWPU VHR-10, DIOR, and VEDAI. The average mAP@0.5 values achieved are 97.7%, 92.9%, 89.7%, and 78.9%, respectively. Similarly, the average mAP@0.5:0.95 values are observed to be 74.0%, 64.3%, 70.7%, and 51.1%. Importantly, the model maintains real-time inference capabilities. In comparison to the YOLOv8 series models, the DS-YOLOv8 model demonstrates significant performance improvements and outperforms other mainstream models in terms of detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知了完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
迅速凝竹完成签到 ,获得积分10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
daheeeee完成签到,获得积分10
4秒前
阿里山完成签到,获得积分10
4秒前
光亮萤完成签到,获得积分10
12秒前
研友_VZG7GZ应助ommphey采纳,获得30
12秒前
why发布了新的文献求助10
15秒前
就好完成签到 ,获得积分10
16秒前
17秒前
ZBY0216完成签到,获得积分10
17秒前
huang完成签到,获得积分20
18秒前
innocent完成签到,获得积分10
19秒前
yu发布了新的文献求助30
20秒前
崔宁宁完成签到 ,获得积分10
21秒前
淡淡阁完成签到 ,获得积分10
21秒前
潜山耕之完成签到,获得积分10
23秒前
jslsny完成签到,获得积分20
23秒前
liangguangyuan完成签到 ,获得积分10
24秒前
666星爷完成签到,获得积分10
30秒前
FashionBoy应助TURBO采纳,获得10
31秒前
聪明小丸子完成签到,获得积分10
33秒前
why完成签到,获得积分10
35秒前
wangqinlei完成签到 ,获得积分10
36秒前
小稻草人完成签到,获得积分10
36秒前
Java完成签到,获得积分10
37秒前
mc完成签到 ,获得积分10
37秒前
封似狮完成签到,获得积分10
40秒前
材1完成签到 ,获得积分10
40秒前
Green完成签到,获得积分10
41秒前
哈哈哈完成签到 ,获得积分10
41秒前
在水一方完成签到 ,获得积分10
41秒前
Linda完成签到,获得积分10
43秒前
44秒前
Liang完成签到,获得积分10
44秒前
45秒前
LIUJIE完成签到,获得积分10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957139
求助须知:如何正确求助?哪些是违规求助? 3503185
关于积分的说明 11111460
捐赠科研通 3234287
什么是DOI,文献DOI怎么找? 1787829
邀请新用户注册赠送积分活动 870783
科研通“疑难数据库(出版商)”最低求助积分说明 802318