Class-Incremental Learning for Recognition of Complex-Valued Signals

计算机科学 分类器(UML) 人工智能 模棱两可 机器学习 人工神经网络 模式识别(心理学) 程序设计语言
作者
Zhenbin Fan,Ya Tu,Yun Lin,Qingjiang Shi
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 417-428 被引量:1
标识
DOI:10.1109/tccn.2023.3331296
摘要

Signal recognition, essential in both military and civilian applications, often deals with an expanding array of signal classes due to the emergence of new communication devices. Current class-incremental learning (CIL) approaches, primarily devised for image-based tasks, prove less efficient when handling complex-valued signals. Moreover, global fine-tuning is not feasible due to its high computational cost. This paper proposes a complex-valued CIL framework, coined as C-SRCIL, engineered to identify complex-valued signals. C-SRCIL features a decoupled feature extractor to limit catastrophic forgetting and updating costs while ensuring the effectiveness of feature representation for CIL with complex-valued neural networks and a carefully designed integrated loss function. During the incremental stage, C-SRCIL modifies the classifier with an adaptive node fusion-based complex-valued CIL adapter, effectively accommodating the increasing signal classes. This paper also proposes an ambiguous boundary indication method for C-SRCIL which solely depends on the weight correlation of the complex-valued classifier to pinpoint the potential ambiguity of signals. Experimental results on benchmark datasets reveal that C-SRCIL outperforms contemporary techniques, highlighting its capacity to expand classification boundaries of previous models with lower overhead. The ambiguous boundary indication method has also been empirically validated, showing its capability to augment predictive information in C-SRCIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助dan1029采纳,获得10
1秒前
ding应助dan1029采纳,获得10
1秒前
1秒前
英姑应助dan1029采纳,获得10
1秒前
可爱的函函应助dan1029采纳,获得10
1秒前
无花果应助dan1029采纳,获得10
1秒前
希望天下0贩的0应助dan1029采纳,获得10
1秒前
Ava应助dan1029采纳,获得10
1秒前
搜集达人应助dan1029采纳,获得10
1秒前
JamesPei应助dan1029采纳,获得10
1秒前
搬砖的化学男应助dan1029采纳,获得10
1秒前
3秒前
3秒前
4秒前
5秒前
XW发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
贰拾Swain完成签到,获得积分10
8秒前
清风完成签到,获得积分10
8秒前
今后应助zhangsudi采纳,获得10
8秒前
小鹿5460完成签到,获得积分10
8秒前
8秒前
LLLLLL发布了新的文献求助10
10秒前
尤珩完成签到,获得积分10
10秒前
zm完成签到,获得积分10
11秒前
11秒前
cauliflower发布了新的文献求助10
11秒前
福西西完成签到,获得积分20
12秒前
12秒前
心灵美博超完成签到 ,获得积分10
13秒前
科研通AI2S应助jjjdy采纳,获得30
14秒前
14秒前
鲁平发布了新的文献求助10
14秒前
咖啡加盐完成签到,获得积分10
14秒前
希望天下0贩的0应助Karry采纳,获得10
18秒前
lian完成签到,获得积分10
18秒前
泮子发布了新的文献求助10
18秒前
慕青应助liv采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101308
求助须知:如何正确求助?哪些是违规求助? 2752714
关于积分的说明 7620589
捐赠科研通 2404990
什么是DOI,文献DOI怎么找? 1276041
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058