Class-Incremental Learning for Recognition of Complex-Valued Signals

计算机科学 分类器(UML) 人工智能 模棱两可 机器学习 人工神经网络 模式识别(心理学) 程序设计语言
作者
Zhenbin Fan,Ya Tu,Yun Lin,Qingjiang Shi
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 417-428 被引量:1
标识
DOI:10.1109/tccn.2023.3331296
摘要

Signal recognition, essential in both military and civilian applications, often deals with an expanding array of signal classes due to the emergence of new communication devices. Current class-incremental learning (CIL) approaches, primarily devised for image-based tasks, prove less efficient when handling complex-valued signals. Moreover, global fine-tuning is not feasible due to its high computational cost. This paper proposes a complex-valued CIL framework, coined as C-SRCIL, engineered to identify complex-valued signals. C-SRCIL features a decoupled feature extractor to limit catastrophic forgetting and updating costs while ensuring the effectiveness of feature representation for CIL with complex-valued neural networks and a carefully designed integrated loss function. During the incremental stage, C-SRCIL modifies the classifier with an adaptive node fusion-based complex-valued CIL adapter, effectively accommodating the increasing signal classes. This paper also proposes an ambiguous boundary indication method for C-SRCIL which solely depends on the weight correlation of the complex-valued classifier to pinpoint the potential ambiguity of signals. Experimental results on benchmark datasets reveal that C-SRCIL outperforms contemporary techniques, highlighting its capacity to expand classification boundaries of previous models with lower overhead. The ambiguous boundary indication method has also been empirically validated, showing its capability to augment predictive information in C-SRCIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
消风散几两重完成签到,获得积分10
1秒前
丘比特应助通~采纳,获得10
1秒前
隐形曼青应助千里采纳,获得10
2秒前
小可发布了新的文献求助10
2秒前
婷123完成签到 ,获得积分10
2秒前
sooya完成签到,获得积分20
2秒前
大个应助俏皮元珊采纳,获得10
2秒前
3秒前
snowdrift发布了新的文献求助10
3秒前
爆米花应助尊敬的钥匙采纳,获得10
3秒前
China完成签到,获得积分10
3秒前
Ll发布了新的文献求助10
3秒前
4秒前
李小胖完成签到,获得积分10
4秒前
刘鹏宇发布了新的文献求助10
5秒前
5秒前
5秒前
SXM发布了新的文献求助10
6秒前
duan完成签到,获得积分20
6秒前
MrCoolWu完成签到,获得积分10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
Leif应助科研通管家采纳,获得20
7秒前
ding应助科研通管家采纳,获得20
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
prosperp应助科研通管家采纳,获得10
8秒前
zhang完成签到,获得积分10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
科研通AI5应助liuguohua126采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740