Class-Incremental Learning for Recognition of Complex-Valued Signals

计算机科学 分类器(UML) 人工智能 模棱两可 机器学习 人工神经网络 模式识别(心理学) 程序设计语言
作者
Zhenbin Fan,Ya Tu,Yun Lin,Qingjiang Shi
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 417-428 被引量:1
标识
DOI:10.1109/tccn.2023.3331296
摘要

Signal recognition, essential in both military and civilian applications, often deals with an expanding array of signal classes due to the emergence of new communication devices. Current class-incremental learning (CIL) approaches, primarily devised for image-based tasks, prove less efficient when handling complex-valued signals. Moreover, global fine-tuning is not feasible due to its high computational cost. This paper proposes a complex-valued CIL framework, coined as C-SRCIL, engineered to identify complex-valued signals. C-SRCIL features a decoupled feature extractor to limit catastrophic forgetting and updating costs while ensuring the effectiveness of feature representation for CIL with complex-valued neural networks and a carefully designed integrated loss function. During the incremental stage, C-SRCIL modifies the classifier with an adaptive node fusion-based complex-valued CIL adapter, effectively accommodating the increasing signal classes. This paper also proposes an ambiguous boundary indication method for C-SRCIL which solely depends on the weight correlation of the complex-valued classifier to pinpoint the potential ambiguity of signals. Experimental results on benchmark datasets reveal that C-SRCIL outperforms contemporary techniques, highlighting its capacity to expand classification boundaries of previous models with lower overhead. The ambiguous boundary indication method has also been empirically validated, showing its capability to augment predictive information in C-SRCIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
2秒前
Hello应助科研顺利采纳,获得10
3秒前
哈哈哈发布了新的文献求助10
3秒前
阿德利企鹅完成签到 ,获得积分10
4秒前
lv发布了新的文献求助10
5秒前
LaTeXer应助旅行者采纳,获得50
5秒前
慕青应助无误采纳,获得10
5秒前
第八维发布了新的文献求助10
6秒前
6秒前
7秒前
Owen应助满眼星辰采纳,获得10
7秒前
7秒前
SYLH应助逸yi采纳,获得10
8秒前
安详凡完成签到 ,获得积分10
10秒前
小白鸽发布了新的文献求助10
11秒前
yc完成签到,获得积分10
13秒前
13秒前
Lucas应助xuan采纳,获得10
14秒前
shugefuhe发布了新的文献求助10
14秒前
15秒前
ss发布了新的文献求助10
16秒前
汉堡包应助阔达的以丹采纳,获得10
16秒前
17秒前
17秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得100
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
CR7应助科研通管家采纳,获得20
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
小钱钱发布了新的文献求助10
19秒前
Zgrey完成签到,获得积分10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182