Class-Incremental Learning for Recognition of Complex-Valued Signals

计算机科学 分类器(UML) 人工智能 模棱两可 机器学习 人工神经网络 模式识别(心理学) 程序设计语言
作者
Zhenbin Fan,Ya Tu,Yun Lin,Qingjiang Shi
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 417-428 被引量:1
标识
DOI:10.1109/tccn.2023.3331296
摘要

Signal recognition, essential in both military and civilian applications, often deals with an expanding array of signal classes due to the emergence of new communication devices. Current class-incremental learning (CIL) approaches, primarily devised for image-based tasks, prove less efficient when handling complex-valued signals. Moreover, global fine-tuning is not feasible due to its high computational cost. This paper proposes a complex-valued CIL framework, coined as C-SRCIL, engineered to identify complex-valued signals. C-SRCIL features a decoupled feature extractor to limit catastrophic forgetting and updating costs while ensuring the effectiveness of feature representation for CIL with complex-valued neural networks and a carefully designed integrated loss function. During the incremental stage, C-SRCIL modifies the classifier with an adaptive node fusion-based complex-valued CIL adapter, effectively accommodating the increasing signal classes. This paper also proposes an ambiguous boundary indication method for C-SRCIL which solely depends on the weight correlation of the complex-valued classifier to pinpoint the potential ambiguity of signals. Experimental results on benchmark datasets reveal that C-SRCIL outperforms contemporary techniques, highlighting its capacity to expand classification boundaries of previous models with lower overhead. The ambiguous boundary indication method has also been empirically validated, showing its capability to augment predictive information in C-SRCIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苹果紊发布了新的文献求助20
刚刚
刚刚
生蚝发布了新的文献求助10
刚刚
刚刚
2秒前
mimi完成签到,获得积分10
2秒前
啵啵完成签到 ,获得积分10
2秒前
希望天下0贩的0应助豆包采纳,获得10
2秒前
思源应助冷静采纳,获得10
3秒前
科研通AI2S应助小丸子采纳,获得10
4秒前
小文完成签到,获得积分10
4秒前
wuhu完成签到 ,获得积分10
4秒前
4秒前
4秒前
桐桐应助陈先生采纳,获得10
4秒前
ala完成签到,获得积分10
5秒前
wuwuwuwuwuwu发布了新的文献求助10
5秒前
救了个命发布了新的文献求助10
5秒前
Vanilla应助轻松的盼兰采纳,获得20
5秒前
Mm完成签到,获得积分10
5秒前
5秒前
Zyy完成签到 ,获得积分10
6秒前
6秒前
绿绿发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
10秒前
浮云发布了新的文献求助20
11秒前
科研通AI6应助all采纳,获得10
11秒前
科芒发布了新的文献求助10
11秒前
11秒前
12秒前
妮妮发布了新的文献求助10
12秒前
科研通AI2S应助为阿达采纳,获得10
12秒前
不一发布了新的文献求助10
12秒前
13秒前
14秒前
希望天下0贩的0应助小鱼采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942443
求助须知:如何正确求助?哪些是违规求助? 4208117
关于积分的说明 13080731
捐赠科研通 3987172
什么是DOI,文献DOI怎么找? 2182916
邀请新用户注册赠送积分活动 1198583
关于科研通互助平台的介绍 1110931