Class-Incremental Learning for Recognition of Complex-Valued Signals

计算机科学 分类器(UML) 人工智能 模棱两可 机器学习 人工神经网络 模式识别(心理学) 程序设计语言
作者
Zhenbin Fan,Ya Tu,Yun Lin,Qingjiang Shi
出处
期刊:IEEE Transactions on Cognitive Communications and Networking [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 417-428 被引量:1
标识
DOI:10.1109/tccn.2023.3331296
摘要

Signal recognition, essential in both military and civilian applications, often deals with an expanding array of signal classes due to the emergence of new communication devices. Current class-incremental learning (CIL) approaches, primarily devised for image-based tasks, prove less efficient when handling complex-valued signals. Moreover, global fine-tuning is not feasible due to its high computational cost. This paper proposes a complex-valued CIL framework, coined as C-SRCIL, engineered to identify complex-valued signals. C-SRCIL features a decoupled feature extractor to limit catastrophic forgetting and updating costs while ensuring the effectiveness of feature representation for CIL with complex-valued neural networks and a carefully designed integrated loss function. During the incremental stage, C-SRCIL modifies the classifier with an adaptive node fusion-based complex-valued CIL adapter, effectively accommodating the increasing signal classes. This paper also proposes an ambiguous boundary indication method for C-SRCIL which solely depends on the weight correlation of the complex-valued classifier to pinpoint the potential ambiguity of signals. Experimental results on benchmark datasets reveal that C-SRCIL outperforms contemporary techniques, highlighting its capacity to expand classification boundaries of previous models with lower overhead. The ambiguous boundary indication method has also been empirically validated, showing its capability to augment predictive information in C-SRCIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eina发布了新的文献求助30
刚刚
LL完成签到,获得积分10
刚刚
充电宝应助sam采纳,获得20
1秒前
思源应助sam采纳,获得10
1秒前
1秒前
ZOE应助sam采纳,获得50
1秒前
香蕉觅云应助顺心柠檬采纳,获得10
1秒前
2秒前
2秒前
煎饼煎饼完成签到,获得积分10
3秒前
范瑞文完成签到,获得积分10
3秒前
可爱的函函应助大妈采纳,获得10
4秒前
sss发布了新的文献求助10
6秒前
7秒前
L~发布了新的文献求助10
7秒前
成永福发布了新的文献求助10
8秒前
8秒前
8秒前
汉堡包应助莲枳榴莲采纳,获得10
9秒前
10秒前
10秒前
10秒前
Christina发布了新的文献求助10
11秒前
12秒前
14秒前
V-aliang完成签到,获得积分10
14秒前
Lan发布了新的文献求助10
15秒前
16秒前
16秒前
丁昆发布了新的文献求助10
17秒前
一二完成签到,获得积分10
18秒前
18秒前
18秒前
21秒前
嘻嘻哈哈应助小辛采纳,获得10
21秒前
耳東完成签到,获得积分20
21秒前
niekyang完成签到 ,获得积分10
22秒前
22秒前
23秒前
积极老黑发布了新的文献求助10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350109
求助须知:如何正确求助?哪些是违规求助? 4483648
关于积分的说明 13956571
捐赠科研通 4382910
什么是DOI,文献DOI怎么找? 2408022
邀请新用户注册赠送积分活动 1400691
关于科研通互助平台的介绍 1374029