清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multiclass weed identification using semantic segmentation: An automated approach for precision agriculture

杂草 计算机科学 精准农业 杂草防治 鉴定(生物学) 水准点(测量) 分割 人工智能 领域(数学) 农业工程 机器学习 农业 数学 工程类 农学 生态学 地理 地图学 纯数学 生物
作者
Sanjay Kumar Gupta,Shivam Yadav,Sanjay Kumar Soni,Udai Shanker,Pradeep Kumar Singh
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:78: 102366-102366 被引量:9
标识
DOI:10.1016/j.ecoinf.2023.102366
摘要

Accurate identification and categorization of numerous weed species are critical for implementing effective control measures and management methods in precision agriculture. Manual weed treatment is time-consuming, labor-intensive, and poses risks of human pesticide exposure. Therefore, the development of automated weed management systems is highly desirable. This study aims to propose an automated approach for multiclass weed identification using semantic segmentation, with the goal of improving weed control techniques, reducing pesticide usage, and enhancing crop yields in a sustainable manner. To address the research objective, we created a novel multiclass weed dataset, focusing on two weed categories found in a brinjal farm located in Gorakhpur, Uttar Pradesh, India during the 2022 field seasons. The dataset covers various developmental phases and was captured under ambient lighting conditions. Leveraging transfer learning, we evaluated four advanced deep learning models to establish a benchmark for weed identification. Among the evaluated models, the U-Net-based Inception-ReseNetV2 achieved the highest F1-score of 96.78%, while the other three models attained F1-scores above 91.0%. These findings demonstrate the efficacy of the proposed approach in accurately identifying and categorizing weeds in agricultural fields. The results of this research provide a foundation for further investigations on weed detection and localization in field environments. The use of semantic segmentation for multiclass weed identification can significantly enhance the efficiency and effectiveness of weed management operations, resulting in reduced pesticide usage and improved crop yields. By adopting automated weed management systems, farmers can minimize labor requirements, save time, and mitigate the risks associated with human pesticide exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
孟寐以求完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
23秒前
cherry_mm完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
36秒前
40秒前
后陡门的夏天完成签到 ,获得积分10
41秒前
kingcoffee完成签到 ,获得积分10
44秒前
50秒前
量子星尘发布了新的文献求助10
55秒前
实力不允许完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
future完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Glitter完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
huanghe完成签到,获得积分10
2分钟前
粗犷的凌波完成签到 ,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
LZQ发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
k sir完成签到,获得积分10
3分钟前
3分钟前
lotus87发布了新的文献求助10
3分钟前
k sir发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538