亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiclass weed identification using semantic segmentation: An automated approach for precision agriculture

杂草 计算机科学 精准农业 杂草防治 鉴定(生物学) 水准点(测量) 分割 人工智能 领域(数学) 农业工程 机器学习 农业 数学 工程类 农学 生态学 地理 地图学 生物 纯数学
作者
Sanjay Kumar Gupta,Shivam Yadav,Sanjay Kumar Soni,Udai Shanker,Pradeep Kumar Singh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:78: 102366-102366 被引量:24
标识
DOI:10.1016/j.ecoinf.2023.102366
摘要

Accurate identification and categorization of numerous weed species are critical for implementing effective control measures and management methods in precision agriculture. Manual weed treatment is time-consuming, labor-intensive, and poses risks of human pesticide exposure. Therefore, the development of automated weed management systems is highly desirable. This study aims to propose an automated approach for multiclass weed identification using semantic segmentation, with the goal of improving weed control techniques, reducing pesticide usage, and enhancing crop yields in a sustainable manner. To address the research objective, we created a novel multiclass weed dataset, focusing on two weed categories found in a brinjal farm located in Gorakhpur, Uttar Pradesh, India during the 2022 field seasons. The dataset covers various developmental phases and was captured under ambient lighting conditions. Leveraging transfer learning, we evaluated four advanced deep learning models to establish a benchmark for weed identification. Among the evaluated models, the U-Net-based Inception-ReseNetV2 achieved the highest F1-score of 96.78%, while the other three models attained F1-scores above 91.0%. These findings demonstrate the efficacy of the proposed approach in accurately identifying and categorizing weeds in agricultural fields. The results of this research provide a foundation for further investigations on weed detection and localization in field environments. The use of semantic segmentation for multiclass weed identification can significantly enhance the efficiency and effectiveness of weed management operations, resulting in reduced pesticide usage and improved crop yields. By adopting automated weed management systems, farmers can minimize labor requirements, save time, and mitigate the risks associated with human pesticide exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
rebeycca发布了新的文献求助10
9秒前
奋斗的马里奥完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
1分钟前
lei完成签到,获得积分20
1分钟前
跳跃紫真完成签到,获得积分10
1分钟前
CodeCraft应助lei采纳,获得10
1分钟前
大玉124完成签到 ,获得积分10
1分钟前
1分钟前
刘菲特1发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
yr应助科研通管家采纳,获得10
1分钟前
co完成签到,获得积分10
1分钟前
gszy1975发布了新的文献求助10
2分钟前
香蕉觅云应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
跳跃紫真发布了新的文献求助10
2分钟前
LeeHx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
德芙纵向丝滑完成签到,获得积分10
3分钟前
co驳回了JamesPei应助
3分钟前
lzy完成签到,获得积分10
3分钟前
科研通AI6.1应助刘不动采纳,获得150
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
gszy1975发布了新的文献求助10
4分钟前
申腾达发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439