Multiclass weed identification using semantic segmentation: An automated approach for precision agriculture

杂草 计算机科学 精准农业 杂草防治 鉴定(生物学) 水准点(测量) 分割 人工智能 领域(数学) 农业工程 机器学习 农业 数学 工程类 农学 生态学 地理 地图学 纯数学 生物
作者
Sanjay Kumar Gupta,Shivam Yadav,Sanjay Kumar Soni,Udai Shanker,Pradeep Kumar Singh
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:78: 102366-102366 被引量:9
标识
DOI:10.1016/j.ecoinf.2023.102366
摘要

Accurate identification and categorization of numerous weed species are critical for implementing effective control measures and management methods in precision agriculture. Manual weed treatment is time-consuming, labor-intensive, and poses risks of human pesticide exposure. Therefore, the development of automated weed management systems is highly desirable. This study aims to propose an automated approach for multiclass weed identification using semantic segmentation, with the goal of improving weed control techniques, reducing pesticide usage, and enhancing crop yields in a sustainable manner. To address the research objective, we created a novel multiclass weed dataset, focusing on two weed categories found in a brinjal farm located in Gorakhpur, Uttar Pradesh, India during the 2022 field seasons. The dataset covers various developmental phases and was captured under ambient lighting conditions. Leveraging transfer learning, we evaluated four advanced deep learning models to establish a benchmark for weed identification. Among the evaluated models, the U-Net-based Inception-ReseNetV2 achieved the highest F1-score of 96.78%, while the other three models attained F1-scores above 91.0%. These findings demonstrate the efficacy of the proposed approach in accurately identifying and categorizing weeds in agricultural fields. The results of this research provide a foundation for further investigations on weed detection and localization in field environments. The use of semantic segmentation for multiclass weed identification can significantly enhance the efficiency and effectiveness of weed management operations, resulting in reduced pesticide usage and improved crop yields. By adopting automated weed management systems, farmers can minimize labor requirements, save time, and mitigate the risks associated with human pesticide exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mr.pork完成签到,获得积分20
1秒前
3秒前
ding应助饼饼采纳,获得10
3秒前
mr.pork发布了新的文献求助10
3秒前
小马甲应助鲤鱼似狮采纳,获得10
5秒前
5秒前
ttt完成签到,获得积分10
7秒前
饼饼完成签到,获得积分10
9秒前
科研通AI5应助王华楠采纳,获得10
10秒前
11秒前
12秒前
12秒前
gao应助cindywu采纳,获得10
14秒前
顾矜应助郭小宝采纳,获得10
15秒前
16秒前
17秒前
英子发布了新的文献求助10
17秒前
肝胆外科医生完成签到,获得积分10
17秒前
淡定草丛发布了新的文献求助10
18秒前
Ella完成签到,获得积分10
19秒前
19秒前
天天开心完成签到,获得积分10
20秒前
21秒前
21秒前
研友_ngkyGn应助徐rl采纳,获得10
22秒前
科研通AI2S应助张于小丸子采纳,获得10
22秒前
22秒前
Kris发布了新的文献求助10
23秒前
alex完成签到,获得积分10
25秒前
26秒前
郭小宝发布了新的文献求助10
26秒前
28秒前
泡面养鱼发布了新的文献求助10
29秒前
ding应助大头采纳,获得10
30秒前
臧佳莹发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
咚咚完成签到 ,获得积分10
32秒前
王华楠发布了新的文献求助10
33秒前
水流众生完成签到 ,获得积分10
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068