Multiclass weed identification using semantic segmentation: An automated approach for precision agriculture

杂草 计算机科学 精准农业 杂草防治 鉴定(生物学) 水准点(测量) 分割 人工智能 领域(数学) 农业工程 机器学习 农业 数学 工程类 农学 生态学 地理 地图学 纯数学 生物
作者
Sanjay Kumar Gupta,Shivam Yadav,Sanjay Kumar Soni,Udai Shanker,Pradeep Kumar Singh
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:78: 102366-102366 被引量:9
标识
DOI:10.1016/j.ecoinf.2023.102366
摘要

Accurate identification and categorization of numerous weed species are critical for implementing effective control measures and management methods in precision agriculture. Manual weed treatment is time-consuming, labor-intensive, and poses risks of human pesticide exposure. Therefore, the development of automated weed management systems is highly desirable. This study aims to propose an automated approach for multiclass weed identification using semantic segmentation, with the goal of improving weed control techniques, reducing pesticide usage, and enhancing crop yields in a sustainable manner. To address the research objective, we created a novel multiclass weed dataset, focusing on two weed categories found in a brinjal farm located in Gorakhpur, Uttar Pradesh, India during the 2022 field seasons. The dataset covers various developmental phases and was captured under ambient lighting conditions. Leveraging transfer learning, we evaluated four advanced deep learning models to establish a benchmark for weed identification. Among the evaluated models, the U-Net-based Inception-ReseNetV2 achieved the highest F1-score of 96.78%, while the other three models attained F1-scores above 91.0%. These findings demonstrate the efficacy of the proposed approach in accurately identifying and categorizing weeds in agricultural fields. The results of this research provide a foundation for further investigations on weed detection and localization in field environments. The use of semantic segmentation for multiclass weed identification can significantly enhance the efficiency and effectiveness of weed management operations, resulting in reduced pesticide usage and improved crop yields. By adopting automated weed management systems, farmers can minimize labor requirements, save time, and mitigate the risks associated with human pesticide exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
崔崔发布了新的文献求助10
2秒前
ff不吃芹菜完成签到,获得积分10
3秒前
叶子完成签到,获得积分10
3秒前
唐唐完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
7秒前
朵朵完成签到,获得积分10
9秒前
发呆的小号完成签到 ,获得积分10
9秒前
充电宝应助原本采纳,获得10
11秒前
山260完成签到 ,获得积分10
11秒前
badada完成签到,获得积分10
11秒前
田様应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
伶俐乐菱应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
shadow完成签到,获得积分10
15秒前
sen123完成签到,获得积分10
16秒前
123完成签到,获得积分20
17秒前
18秒前
NATURECATCHER完成签到,获得积分10
18秒前
温暖霸完成签到,获得积分10
18秒前
以筱完成签到,获得积分10
19秒前
NexusExplorer应助崔崔采纳,获得10
19秒前
CipherSage应助Passskd采纳,获得10
23秒前
24秒前
子睿完成签到,获得积分10
24秒前
背后雨柏完成签到 ,获得积分10
24秒前
25秒前
nanana发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
五月初夏完成签到,获得积分10
26秒前
hannah发布了新的文献求助10
29秒前
songvv完成签到,获得积分20
30秒前
哟哟哟完成签到,获得积分10
31秒前
31秒前
wanglejia完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022