Predicting Ultrafast Nonlinear Dynamics in Fiber Optics by Enhanced Physics-Informed Neural Network

非线性系统 超短脉冲 超连续谱 人工神经网络 瓶颈 因果关系(物理学) 物理系统 物理 非线性光学 计算机科学 统计物理学 光纤 人工智能 光学 光子晶体光纤 量子力学 嵌入式系统 激光器
作者
Xiaotian Jiang,Danshi Wang,Yuchen Song,Hongjie Chen,Dongmei Huang,Danshi Wang
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1381-1394 被引量:1
标识
DOI:10.1109/jlt.2023.3322893
摘要

Ultrafast nonlinear dynamics plays a crucial role in ultrafast optics, necessitating accurate solutions to the generalized nonlinear Schrödinger equation (GNLSE) for understanding its underlying mathematical mechanisms. However, the GNLSE exhibits intricate physical interactions with highly nonlinear effects, leading to the complexity bottleneck in numerical methods and physical inconsistency in data-driven methods. Physics-informed neural networks (PINNs) can address these challenges by learning prior physical knowledge during the network optimization. However, the pathologies in the structure and learning mode of the vanilla PINN hinders its ability to learn high-nonlinear dynamics and high-frequency features. In this study, an enhanced PINN is proposed for ultrafast nonlinear dynamics in fiber optics, which strictly follows the spatial causality while simultaneously learning all frequency components. The model performance and generalization ability are investigated in two typical ultrafast nonlinear scenarios: higher-order soliton compression and supercontinuum generation, and the generated results exhibit remarkable agreement with reference results. Moreover, we also analyze the computational complexity of numerical methods and physical inconsistency of data-driven methods, and propose potential extensions for more complex scenarios. This work demonstrates the promising potential of the enhanced PINN in comprehending, characterizing, and modeling intricate dynamics with high-nonlinearity and high-frequency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FL发布了新的文献求助30
1秒前
enen发布了新的文献求助10
1秒前
1秒前
无极微光应助hahha采纳,获得20
1秒前
1秒前
sssjjjxx完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Mr.H完成签到 ,获得积分10
4秒前
lcs发布了新的文献求助10
4秒前
4秒前
王小胖完成签到,获得积分20
5秒前
CScs25完成签到 ,获得积分10
5秒前
5秒前
小李发布了新的文献求助10
5秒前
jingmishensi发布了新的文献求助10
6秒前
科研通AI6应助大气怜烟采纳,获得10
6秒前
6秒前
小乐儿~完成签到,获得积分10
6秒前
6秒前
灵巧鑫发布了新的文献求助10
7秒前
zzr123发布了新的文献求助10
7秒前
7秒前
7秒前
曦梦源完成签到,获得积分10
7秒前
共享精神应助飞快的代天采纳,获得10
8秒前
白华苍松发布了新的文献求助10
8秒前
Hyc28441711发布了新的文献求助10
8秒前
一问三不知先生完成签到,获得积分10
8秒前
春风沂水发布了新的文献求助40
9秒前
云端梦境发布了新的文献求助10
9秒前
10秒前
10秒前
奇怪的茶叶菌完成签到,获得积分10
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066