Predicting Ultrafast Nonlinear Dynamics in Fiber Optics by Enhanced Physics-Informed Neural Network

非线性系统 超短脉冲 超连续谱 人工神经网络 瓶颈 因果关系(物理学) 物理系统 物理 非线性光学 计算机科学 统计物理学 光纤 人工智能 光学 光子晶体光纤 量子力学 激光器 嵌入式系统
作者
Xiaotian Jiang,Danshi Wang,Yuchen Song,Hongjie Chen,Dongmei Huang,Danshi Wang
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1381-1394 被引量:1
标识
DOI:10.1109/jlt.2023.3322893
摘要

Ultrafast nonlinear dynamics plays a crucial role in ultrafast optics, necessitating accurate solutions to the generalized nonlinear Schrödinger equation (GNLSE) for understanding its underlying mathematical mechanisms. However, the GNLSE exhibits intricate physical interactions with highly nonlinear effects, leading to the complexity bottleneck in numerical methods and physical inconsistency in data-driven methods. Physics-informed neural networks (PINNs) can address these challenges by learning prior physical knowledge during the network optimization. However, the pathologies in the structure and learning mode of the vanilla PINN hinders its ability to learn high-nonlinear dynamics and high-frequency features. In this study, an enhanced PINN is proposed for ultrafast nonlinear dynamics in fiber optics, which strictly follows the spatial causality while simultaneously learning all frequency components. The model performance and generalization ability are investigated in two typical ultrafast nonlinear scenarios: higher-order soliton compression and supercontinuum generation, and the generated results exhibit remarkable agreement with reference results. Moreover, we also analyze the computational complexity of numerical methods and physical inconsistency of data-driven methods, and propose potential extensions for more complex scenarios. This work demonstrates the promising potential of the enhanced PINN in comprehending, characterizing, and modeling intricate dynamics with high-nonlinearity and high-frequency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PANDA发布了新的文献求助10
刚刚
Scinature发布了新的文献求助10
1秒前
Shelley发布了新的文献求助10
1秒前
ucjudgo完成签到,获得积分10
4秒前
支妙完成签到,获得积分10
7秒前
12秒前
12秒前
无花果应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得50
13秒前
Ava应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
14秒前
今后应助科研通管家采纳,获得30
14秒前
hhhi应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
海东来应助科研通管家采纳,获得30
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
科研乞丐应助科研通管家采纳,获得20
14秒前
14秒前
思源应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
kexing发布了新的文献求助10
15秒前
桐桐应助feedyoursoul采纳,获得10
15秒前
wshengnan发布了新的文献求助10
17秒前
21秒前
wshengnan完成签到,获得积分10
21秒前
AI完成签到,获得积分10
22秒前
li发布了新的文献求助10
23秒前
完美世界应助萧一采纳,获得10
25秒前
科研民工李完成签到,获得积分10
26秒前
zinc发布了新的文献求助10
26秒前
科研通AI5应助阿燕采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975