Coarse-to-fine prior-guided attention network for multi-structure segmentation on dental panoramic radiographs

分割 计算机科学 人工智能 背景(考古学) 计算机视觉 射线照相术 特征(语言学) 深度学习 卷积神经网络 模式识别(心理学) 医学 放射科 古生物学 语言学 哲学 生物
作者
Yuan Tian,Zhejia Zhang,Bailiang Zhao,Lichao Liu,Xiaolin Liu,Feng Yang,Jie Tian,Dazhi Kou
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (21): 215010-215010 被引量:1
标识
DOI:10.1088/1361-6560/ad0218
摘要

Objective. Accurate segmentation of various anatomical structures from dental panoramic radiographs is essential for the diagnosis and treatment planning of various diseases in digital dentistry. In this paper, we propose a novel deep learning-based method for accurate and fully automatic segmentation of the maxillary sinus, mandibular condyle, mandibular nerve, alveolar bone and teeth on panoramic radiographs.Approach. A two-stage coarse-to-fine prior-guided segmentation framework is proposed to segment multiple structures on dental panoramic radiographs. In the coarse stage, a multi-label segmentation network is used to generate the coarse segmentation mask, and in the fine-tuning stage, a prior-guided attention network with an encoder-decoder architecture is proposed to precisely predict the mask of each anatomical structure. First, a prior-guided edge fusion module is incorporated into the network at the input of each convolution level of the encode path to generate edge-enhanced image feature maps. Second, a prior-guided spatial attention module is proposed to guide the network to extract relevant spatial features from foreground regions based on the combination of the prior information and the spatial attention mechanism. Finally, a prior-guided hybrid attention module is integrated at the bottleneck of the network to explore global context from both spatial and category perspectives.Main results. We evaluated the segmentation performance of our method on a testing dataset that contains 150 panoramic radiographs collected from real-world clinical scenarios. The segmentation results indicate that our proposed method achieves more accurate segmentation performance compared with state-of-the-art methods. The average Jaccard scores are 87.91%, 85.25%, 63.94%, 93.46% and 88.96% for the maxillary sinus, mandibular condyle, mandibular nerve, alveolar bone and teeth, respectively.Significance. The proposed method was able to accurately segment multiple structures on panoramic radiographs. This method has the potential to be part of the process of automatic pathology diagnosis from dental panoramic radiographs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长生的落叶完成签到,获得积分10
1秒前
wzllyt发布了新的文献求助30
1秒前
王王完成签到 ,获得积分10
2秒前
2秒前
7_2U1发布了新的文献求助10
2秒前
3秒前
gzsy完成签到 ,获得积分10
3秒前
风趣雅柏完成签到 ,获得积分20
3秒前
Dr_Shi完成签到,获得积分10
4秒前
顾末发布了新的文献求助10
4秒前
小黄鸭呀完成签到,获得积分10
4秒前
彩虹完成签到,获得积分10
5秒前
盏茶轻抿完成签到,获得积分10
5秒前
5秒前
5秒前
cc发布了新的文献求助10
6秒前
小杨完成签到,获得积分10
6秒前
缥缈一曲发布了新的文献求助10
6秒前
妮妮发布了新的文献求助10
7秒前
7秒前
温柔傲安完成签到,获得积分10
7秒前
7秒前
left_right完成签到,获得积分10
8秒前
hhh发布了新的文献求助10
8秒前
leishenwang完成签到,获得积分10
9秒前
迷你的夏菡完成签到 ,获得积分10
9秒前
9秒前
图图完成签到,获得积分10
9秒前
aaaa发布了新的文献求助10
9秒前
hugh完成签到,获得积分10
10秒前
负责的白开水应助彭于晏采纳,获得20
10秒前
科研通AI2S应助Zr采纳,获得10
11秒前
大胆诗霜完成签到,获得积分10
11秒前
现代的妍完成签到,获得积分10
11秒前
无限毛豆完成签到 ,获得积分10
11秒前
痴情的翠桃完成签到,获得积分10
11秒前
宇心完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478