Coarse-to-fine prior-guided attention network for multi-structure segmentation on dental panoramic radiographs

分割 计算机科学 人工智能 背景(考古学) 计算机视觉 射线照相术 特征(语言学) 深度学习 卷积神经网络 模式识别(心理学) 医学 放射科 古生物学 语言学 哲学 生物
作者
Yuan Tian,Zhejia Zhang,Bailiang Zhao,Lichao Liu,Xiaolin Liu,Feng Yang,Jie Tian,Dazhi Kou
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (21): 215010-215010 被引量:1
标识
DOI:10.1088/1361-6560/ad0218
摘要

Objective. Accurate segmentation of various anatomical structures from dental panoramic radiographs is essential for the diagnosis and treatment planning of various diseases in digital dentistry. In this paper, we propose a novel deep learning-based method for accurate and fully automatic segmentation of the maxillary sinus, mandibular condyle, mandibular nerve, alveolar bone and teeth on panoramic radiographs.Approach. A two-stage coarse-to-fine prior-guided segmentation framework is proposed to segment multiple structures on dental panoramic radiographs. In the coarse stage, a multi-label segmentation network is used to generate the coarse segmentation mask, and in the fine-tuning stage, a prior-guided attention network with an encoder-decoder architecture is proposed to precisely predict the mask of each anatomical structure. First, a prior-guided edge fusion module is incorporated into the network at the input of each convolution level of the encode path to generate edge-enhanced image feature maps. Second, a prior-guided spatial attention module is proposed to guide the network to extract relevant spatial features from foreground regions based on the combination of the prior information and the spatial attention mechanism. Finally, a prior-guided hybrid attention module is integrated at the bottleneck of the network to explore global context from both spatial and category perspectives.Main results. We evaluated the segmentation performance of our method on a testing dataset that contains 150 panoramic radiographs collected from real-world clinical scenarios. The segmentation results indicate that our proposed method achieves more accurate segmentation performance compared with state-of-the-art methods. The average Jaccard scores are 87.91%, 85.25%, 63.94%, 93.46% and 88.96% for the maxillary sinus, mandibular condyle, mandibular nerve, alveolar bone and teeth, respectively.Significance. The proposed method was able to accurately segment multiple structures on panoramic radiographs. This method has the potential to be part of the process of automatic pathology diagnosis from dental panoramic radiographs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
刚刚
小马甲应助eeeee采纳,获得10
1秒前
Clarence完成签到,获得积分10
2秒前
研友_LBRPOL完成签到 ,获得积分10
2秒前
2秒前
英俊的铭应助hzk采纳,获得10
3秒前
4秒前
JaneChen发布了新的文献求助50
7秒前
8秒前
8秒前
pgg发布了新的文献求助10
9秒前
10秒前
11秒前
DongZhikai应助sing采纳,获得10
11秒前
12秒前
Meimei发布了新的文献求助20
14秒前
byumi发布了新的文献求助10
15秒前
hzk发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
你好好好完成签到,获得积分10
19秒前
20秒前
Meimei完成签到,获得积分10
21秒前
Singularity发布了新的文献求助10
21秒前
23秒前
Heheya发布了新的文献求助10
24秒前
pgg完成签到,获得积分20
25秒前
26秒前
ssk发布了新的文献求助10
26秒前
烟花应助温婉的惜文采纳,获得10
27秒前
万能图书馆应助HMBB采纳,获得10
27秒前
qinglingdao完成签到,获得积分10
27秒前
qizhia发布了新的文献求助10
28秒前
30秒前
打打应助you采纳,获得10
30秒前
缓慢思枫发布了新的文献求助10
31秒前
赘婿应助Ammy采纳,获得10
34秒前
34秒前
Richardisme完成签到 ,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139078
求助须知:如何正确求助?哪些是违规求助? 2789947
关于积分的说明 7793264
捐赠科研通 2446392
什么是DOI,文献DOI怎么找? 1301085
科研通“疑难数据库(出版商)”最低求助积分说明 626105
版权声明 601102