亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multilevel Privacy Protection for Social Media Based on 2-D Compressive Sensing

计算机科学 互联网隐私 信息隐私 计算机安全 社会化媒体 隐私保护 压缩传感 电信 万维网 人工智能
作者
Xiaofei He,Lixiang Li,Fenghua Tong,Haipeng Peng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6878-6892 被引量:1
标识
DOI:10.1109/jiot.2023.3313812
摘要

Currently, the popularity of social networks has brought us rich and colorful displays and pleasant experiences. However, social networking is also a double-edged sword. While pleasing us, it also raises the issue of privacy disclosure of social media images. How to protect the privacy of media images has become a significant issue for social networks. When we post large quantities of images on social networks to share our daily lives, sometimes we only want to share them with specific friends or want friends with different permissions to see different image content, which involves hierarchical privacy protection. In particular, when the image to be shared contains multiple privacy-sensitive areas of different levels, and we only want to protect the privacy-sensitive areas rather than the whole image, how to protect each privacy-sensitive area is a major problem. Aiming at the above problems, a multilevel privacy protection scheme for image sharing in social networks based on 2-D compressive sensing is proposed. This scheme has the advantages of compressive sampling, privacy protection and controllable access. In addition, we propose a 2-D projected gradient algorithm with accompanying privacy region decryption (2DPG-APRD) for implementing the hierarchical privacy-preserving function of the proposed scheme. Experimental results show that our scheme has multilevel reconstruction quality, high-security intensity for different authorized users, and can well protect the privacy information of images. Therefore, the proposed scheme suits for many practical multilevel encryption situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小绵羊完成签到 ,获得积分10
2秒前
6秒前
YE发布了新的文献求助10
9秒前
DD完成签到 ,获得积分10
9秒前
浦肯野应助内向耷采纳,获得60
21秒前
风止发布了新的文献求助10
21秒前
Drxie完成签到,获得积分10
22秒前
张同学快去做实验呀完成签到,获得积分10
31秒前
34秒前
bkagyin应助haokeyan采纳,获得10
54秒前
Hart完成签到 ,获得积分10
1分钟前
善学以致用应助风止采纳,获得10
1分钟前
酷波er应助yupeijin采纳,获得10
1分钟前
1分钟前
1分钟前
风止发布了新的文献求助10
1分钟前
1分钟前
没有昵称发布了新的文献求助10
1分钟前
赘婿应助风止采纳,获得10
1分钟前
科研通AI5应助没有昵称采纳,获得10
1分钟前
1分钟前
852应助顺心的星月采纳,获得10
1分钟前
小pppp发布了新的文献求助10
1分钟前
刘大喜发布了新的文献求助10
1分钟前
小pppp完成签到,获得积分10
1分钟前
喵喵发布了新的文献求助230
1分钟前
1分钟前
1分钟前
86400完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助zhangyimg采纳,获得10
2分钟前
天天快乐应助Sahar采纳,获得10
2分钟前
2分钟前
2分钟前
uu发布了新的文献求助10
2分钟前
haokeyan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
haokeyan完成签到,获得积分10
2分钟前
Sahar发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865