Attention Calibration for Transformer-based Sequential Recommendation

计算机科学 变压器 水准点(测量) 人工智能 机器学习 数据挖掘 工程类 大地测量学 电气工程 电压 地理
作者
Peilin Zhou,Qichen Ye,Yueqi Xie,Joy Gao,Shoujin Wang,Jae Boum Kim,Chenyu You,Sung Hun Kim
标识
DOI:10.1145/3583780.3614785
摘要

Transformer-based sequential recommendation (SR) has been booming in recent years, with the self-attention mechanism as its key component. Self-attention has been widely believed to be able to effectively select those informative and relevant items from a sequence of interacted items for next-item prediction via learning larger attention weights for these items. However, this may not always be true in reality. Our empirical analysis of some representative Transformer-based SR models reveals that it is not uncommon for large attention weights to be assigned to less relevant items, which can result in inaccurate recommendations. Through further in-depth analysis, we find two factors that may contribute to such inaccurate assignment of attention weights:sub-optimal position encoding andnoisy input. To this end, in this paper, we aim to address this significant yet challenging gap in existing works. To be specific, we propose a simple yet effective framework called Attention Calibration for Transformer-based Sequential Recommendation (AC-TSR). In AC-TSR, a novel spatial calibrator and adversarial calibrator are designed respectively to directly calibrates those incorrectly assigned attention weights. The former is devised to explicitly capture the spatial relationships (i.e., order and distance) among items for more precise calculation of attention weights. The latter aims to redistribute the attention weights based on each item's contribution to the next-item prediction. AC-TSR is readily adaptable and can be seamlessly integrated into various existing transformer-based SR models. Extensive experimental results on four benchmark real-world datasets demonstrate the superiority of our proposed AC-TSR via significant recommendation performance enhancements. The source code is available at https://github.com/AIM-SE/AC-TSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊南完成签到 ,获得积分20
刚刚
yxrose完成签到,获得积分10
1秒前
枝杲完成签到,获得积分20
1秒前
ws发布了新的文献求助10
2秒前
潇洒的秋荷完成签到,获得积分10
2秒前
yml完成签到 ,获得积分10
2秒前
ssjk完成签到,获得积分10
2秒前
jojo完成签到 ,获得积分10
2秒前
leleay发布了新的文献求助10
2秒前
3秒前
vitamin发布了新的文献求助10
3秒前
冬瓜完成签到,获得积分10
3秒前
风中虔纹完成签到,获得积分10
3秒前
lumos发布了新的文献求助10
3秒前
甜甜芾完成签到,获得积分10
3秒前
3秒前
汉堡包应助马甲甲采纳,获得50
4秒前
xiaofeixia完成签到 ,获得积分10
4秒前
liang完成签到 ,获得积分10
4秒前
4秒前
4秒前
Lucas应助明理夜山采纳,获得10
4秒前
4秒前
5秒前
lin完成签到,获得积分10
5秒前
Happy完成签到 ,获得积分10
5秒前
6秒前
7秒前
含蓄的小丸子完成签到,获得积分10
7秒前
NexusExplorer应助白椋采纳,获得10
8秒前
单春栋完成签到,获得积分10
8秒前
畅快的长颈鹿完成签到,获得积分10
8秒前
ljz910005完成签到,获得积分10
8秒前
8秒前
仝富贵发布了新的文献求助10
8秒前
子衿发布了新的文献求助10
9秒前
9秒前
上官听白发布了新的文献求助20
9秒前
shirley完成签到,获得积分10
9秒前
段汶完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301