已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention Calibration for Transformer-based Sequential Recommendation

计算机科学 变压器 水准点(测量) 人工智能 机器学习 数据挖掘 工程类 大地测量学 电气工程 电压 地理
作者
Peilin Zhou,Qichen Ye,Yueqi Xie,Joy Gao,Shoujin Wang,Jae Boum Kim,Chenyu You,Sung Hun Kim
标识
DOI:10.1145/3583780.3614785
摘要

Transformer-based sequential recommendation (SR) has been booming in recent years, with the self-attention mechanism as its key component. Self-attention has been widely believed to be able to effectively select those informative and relevant items from a sequence of interacted items for next-item prediction via learning larger attention weights for these items. However, this may not always be true in reality. Our empirical analysis of some representative Transformer-based SR models reveals that it is not uncommon for large attention weights to be assigned to less relevant items, which can result in inaccurate recommendations. Through further in-depth analysis, we find two factors that may contribute to such inaccurate assignment of attention weights:sub-optimal position encoding andnoisy input. To this end, in this paper, we aim to address this significant yet challenging gap in existing works. To be specific, we propose a simple yet effective framework called Attention Calibration for Transformer-based Sequential Recommendation (AC-TSR). In AC-TSR, a novel spatial calibrator and adversarial calibrator are designed respectively to directly calibrates those incorrectly assigned attention weights. The former is devised to explicitly capture the spatial relationships (i.e., order and distance) among items for more precise calculation of attention weights. The latter aims to redistribute the attention weights based on each item's contribution to the next-item prediction. AC-TSR is readily adaptable and can be seamlessly integrated into various existing transformer-based SR models. Extensive experimental results on four benchmark real-world datasets demonstrate the superiority of our proposed AC-TSR via significant recommendation performance enhancements. The source code is available at https://github.com/AIM-SE/AC-TSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远行客HB发布了新的文献求助10
1秒前
tanhaowen发布了新的文献求助10
1秒前
3秒前
chenjian完成签到,获得积分10
4秒前
迷路的台灯完成签到 ,获得积分10
7秒前
7秒前
852应助Lemon采纳,获得10
9秒前
zzyfsh发布了新的文献求助10
10秒前
pp发布了新的文献求助10
12秒前
有魅力的白玉完成签到 ,获得积分10
14秒前
15秒前
春天的粥完成签到 ,获得积分10
15秒前
TT发布了新的文献求助10
20秒前
vippp完成签到 ,获得积分10
20秒前
称心初之完成签到 ,获得积分10
21秒前
小蝶完成签到 ,获得积分10
21秒前
pp完成签到 ,获得积分10
23秒前
24秒前
寂寞的诗云完成签到,获得积分10
25秒前
在水一方应助xiaoya927217采纳,获得10
26秒前
小蛇玩完成签到,获得积分10
28秒前
暮封发布了新的文献求助10
30秒前
tjnksy完成签到,获得积分10
31秒前
情怀应助HUOZHUANGCHAO采纳,获得10
34秒前
科研通AI6应助哲别采纳,获得10
36秒前
祝佳其完成签到 ,获得积分10
37秒前
暮封完成签到,获得积分10
39秒前
TT完成签到,获得积分10
43秒前
43秒前
情怀应助长情无心采纳,获得10
47秒前
今后应助阿梅梅梅采纳,获得10
47秒前
慕青应助阿梅梅梅采纳,获得10
47秒前
小蘑菇应助喜悦的如娆采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得30
50秒前
田様应助科研通管家采纳,获得10
50秒前
小马甲应助科研通管家采纳,获得10
50秒前
淡淡的妙梦完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511