Attention Calibration for Transformer-based Sequential Recommendation

计算机科学 变压器 水准点(测量) 人工智能 机器学习 数据挖掘 工程类 大地测量学 电压 地理 电气工程
作者
Peilin Zhou,Qichen Ye,Yueqi Xie,Joy Gao,Shoujin Wang,Jae Boum Kim,Chenyu You,Sung Hun Kim
标识
DOI:10.1145/3583780.3614785
摘要

Transformer-based sequential recommendation (SR) has been booming in recent years, with the self-attention mechanism as its key component. Self-attention has been widely believed to be able to effectively select those informative and relevant items from a sequence of interacted items for next-item prediction via learning larger attention weights for these items. However, this may not always be true in reality. Our empirical analysis of some representative Transformer-based SR models reveals that it is not uncommon for large attention weights to be assigned to less relevant items, which can result in inaccurate recommendations. Through further in-depth analysis, we find two factors that may contribute to such inaccurate assignment of attention weights:sub-optimal position encoding andnoisy input. To this end, in this paper, we aim to address this significant yet challenging gap in existing works. To be specific, we propose a simple yet effective framework called Attention Calibration for Transformer-based Sequential Recommendation (AC-TSR). In AC-TSR, a novel spatial calibrator and adversarial calibrator are designed respectively to directly calibrates those incorrectly assigned attention weights. The former is devised to explicitly capture the spatial relationships (i.e., order and distance) among items for more precise calculation of attention weights. The latter aims to redistribute the attention weights based on each item's contribution to the next-item prediction. AC-TSR is readily adaptable and can be seamlessly integrated into various existing transformer-based SR models. Extensive experimental results on four benchmark real-world datasets demonstrate the superiority of our proposed AC-TSR via significant recommendation performance enhancements. The source code is available at https://github.com/AIM-SE/AC-TSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈某某完成签到,获得积分10
刚刚
卡皮巴丘完成签到 ,获得积分10
1秒前
周少完成签到,获得积分10
1秒前
陶一二完成签到,获得积分10
3秒前
3秒前
3秒前
DocZhao完成签到 ,获得积分10
4秒前
apt完成签到,获得积分10
4秒前
4秒前
Three完成签到,获得积分10
5秒前
如果多年后完成签到 ,获得积分10
5秒前
SYLH应助solobang采纳,获得10
6秒前
SYLH应助solobang采纳,获得10
6秒前
灰色与青完成签到,获得积分10
6秒前
852应助幸福胡萝卜采纳,获得10
6秒前
虞无声应助年华采纳,获得10
6秒前
7秒前
香菜发布了新的文献求助10
8秒前
hf发布了新的文献求助10
8秒前
10秒前
爱听歌长颈鹿完成签到,获得积分20
10秒前
852应助抓恐龙采纳,获得10
10秒前
11秒前
小小鱼完成签到,获得积分10
11秒前
11秒前
单薄的小鸽子完成签到,获得积分10
12秒前
13秒前
charon完成签到,获得积分20
13秒前
bkagyin应助fff采纳,获得10
13秒前
小宇发布了新的文献求助10
14秒前
14秒前
1111发布了新的文献求助10
14秒前
单薄凌蝶完成签到,获得积分10
15秒前
15秒前
哄哄完成签到,获得积分10
15秒前
求知若渴完成签到,获得积分10
15秒前
ysf完成签到,获得积分10
16秒前
如意航空完成签到,获得积分10
17秒前
洛杉矶的奥斯卡完成签到,获得积分10
17秒前
yxy完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678