已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An MRI-based grading system for preoperative risk estimation of positive surgical margin after radical prostatectomy

医学 前列腺切除术 逻辑回归 手术切缘 科恩卡帕 卡帕 分级(工程) 磁共振成像 核医学 放射科 前列腺癌 外科 内科学 切除术 癌症 数学 统计 工程类 土木工程 几何学
作者
Lili Xu,Gumuyang Zhang,Daming Zhang,Jiahui Zhang,Xiaoxiao Zhang,Xin Bai,Li Chen,Qianyu Peng,Yu Xiao,Hao Wang,Zhengyu Jin,Hao Sun
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1186/s13244-023-01516-4
摘要

Abstract Objective To construct a simplified grading system based on MRI features to predict positive surgical margin (PSM) after radical prostatectomy (RP). Methods Patients who had undergone prostate MRI followed by RP between January 2017 and January 2021 were retrospectively enrolled as the derivation group, and those between February 2021 and November 2022 were enrolled as the validation group. One radiologist evaluated tumor-related MRI features, including the capsule contact length (CCL) of lesions, frank extraprostatic extension (EPE), apex abutting, etc. Binary logistic regression and decision tree analysis were used to select risk features for PSM. The area under the curve (AUC), sensitivity, and specificity of different systems were calculated. The interreader agreement of the scoring systems was evaluated using the kappa statistic. Results There were 29.8% (42/141) and 36.4% (32/88) of patients who had PSM in the derivation and validation cohorts, respectively. The first grading system was proposed (mrPSM1) using two imaging features, namely, CCL ≥ 20 mm and apex abutting, and then updated by adding frank EPE (mrPSM2). In the derivation group, the AUC was 0.705 for mrPSM1 and 0.713 for mrPSM2. In the validation group, our grading systems showed comparable AUC with Park et al.’s model (0.672–0.686 vs. 0.646, p > 0.05) and significantly higher specificity (0.732–0.750 vs. 0.411, p < 0.001). The kappa value was 0.764 for mrPSM1 and 0.776 for mrPSM2. Decision curve analysis showed a higher net benefit for mrPSM2. Conclusion The proposed grading systems based on MRI could benefit the risk stratification of PSM and are easily interpretable. Critical relevance statement The proposed mrPSM grading systems for preoperative prediction of surgical margin status after radical prostatectomy are simplified compared to a previous model and show high specificity for identifying the risk of positive surgical margin, which might benefit the management of prostate cancer. Key points • CCL ≥ 20 mm, apex abutting, and EPE were important MRI features for PSM. • Our proposed MRI-based grading systems showed the possibility to predict PSM with high specificity. • The MRI-based grading systems might facilitate a structured risk evaluation of PSM. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
wwt发布了新的文献求助10
2秒前
FashionBoy应助内向的绿海采纳,获得10
5秒前
5秒前
三泥完成签到,获得积分10
5秒前
Fn完成签到 ,获得积分10
7秒前
Momomo应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Momomo应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Momomo应助科研通管家采纳,获得10
9秒前
Momomo应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
10秒前
朱砂完成签到,获得积分10
11秒前
共享精神应助nickel采纳,获得10
11秒前
重要的水壶完成签到,获得积分10
12秒前
枝头树上的布谷鸟完成签到 ,获得积分10
12秒前
大智若愚骨头完成签到,获得积分10
13秒前
tigger完成签到 ,获得积分10
13秒前
Elthrai完成签到 ,获得积分10
14秒前
14秒前
炙热安彤发布了新的文献求助10
16秒前
21秒前
22秒前
22秒前
TYW完成签到,获得积分10
25秒前
obaica完成签到,获得积分10
25秒前
bkagyin应助xxx采纳,获得10
26秒前
英俊的铭应助wwt采纳,获得10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426