从头算
物理
人工神经网络
氢
统计物理学
波函数
玻尔兹曼常数
玻尔兹曼机
蒙特卡罗方法
自由电子模型
电子
计算机科学
量子力学
统计
数学
机器学习
作者
Hao Xie,Zi-Hang Li,Han Wang,Linfeng Zhang,Lei Wang
标识
DOI:10.1103/physrevlett.131.126501
摘要
We developed a deep generative model-based variational free energy approach to the equations of state of dense hydrogen. We employ a normalizing flow network to model the proton Boltzmann distribution and a fermionic neural network to model the electron wave function at given proton positions. By jointly optimizing the two neural networks we reached a comparable variational free energy to the previous coupled electron-ion Monte Carlo calculation. The predicted equation of state of dense hydrogen under planetary conditions is denser than the findings of ab initio molecular dynamics calculation and empirical chemical model. Moreover, direct access to the entropy and free energy of dense hydrogen opens new opportunities in planetary modeling and high-pressure physics research.
科研通智能强力驱动
Strongly Powered by AbleSci AI