摘要
Batteries & SupercapsEarly View e202300383 Research Article In-situ Polymerized Single Lithium-ion Conducting Binder as an Integrated Strategy for High Voltage LNMO Electrodes Jorge Olmedo-González, Jorge Olmedo-González orcid.org/0000-0001-6832-9345 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorDr. Gregorio Guzmán-González, Dr. Gregorio Guzmán-González orcid.org/0000-0002-8080-0862 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this authorDr. Arturo Manzo-Robledo, Dr. Arturo Manzo-Robledo orcid.org/0000-0002-8570-4028 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorDr. Daniel Ramírez-Rosales, Dr. Daniel Ramírez-Rosales Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorStephany N. Arellano-Ahumada, Stephany N. Arellano-Ahumada Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorMarco A. Vera-Ramírez, Marco A. Vera-Ramírez Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this authorDr. Ignacio González, Dr. Ignacio González orcid.org/0000-0002-9651-2515 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this authorDr. Rosa de Guadalupe González-Huerta, Dr. Rosa de Guadalupe González-Huerta orcid.org/0000-0002-6016-4723 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorDr. Guadalupe Ramos-Sanchez, Corresponding Author Dr. Guadalupe Ramos-Sanchez [email protected] orcid.org/0000-0002-3976-4724 Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this author Jorge Olmedo-González, Jorge Olmedo-González orcid.org/0000-0001-6832-9345 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorDr. Gregorio Guzmán-González, Dr. Gregorio Guzmán-González orcid.org/0000-0002-8080-0862 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this authorDr. Arturo Manzo-Robledo, Dr. Arturo Manzo-Robledo orcid.org/0000-0002-8570-4028 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorDr. Daniel Ramírez-Rosales, Dr. Daniel Ramírez-Rosales Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorStephany N. Arellano-Ahumada, Stephany N. Arellano-Ahumada Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorMarco A. Vera-Ramírez, Marco A. Vera-Ramírez Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this authorDr. Ignacio González, Dr. Ignacio González orcid.org/0000-0002-9651-2515 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this authorDr. Rosa de Guadalupe González-Huerta, Dr. Rosa de Guadalupe González-Huerta orcid.org/0000-0002-6016-4723 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, 07738 Mexico City, MéxicoSearch for more papers by this authorDr. Guadalupe Ramos-Sanchez, Corresponding Author Dr. Guadalupe Ramos-Sanchez [email protected] orcid.org/0000-0002-3976-4724 Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico City, MéxicoSearch for more papers by this author First published: 17 November 2023 https://doi.org/10.1002/batt.202300383Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract High voltage LNMO electrodes: The utilization of a boron-based single lithium-conducting polymer as a binder in high-voltage LiNi0.5Mn1.5O4 cathodes results in a substantial 38 % increase in capacity at 1 C discharge and effectively decreases polarization by concentration. This strategy also mitigates reactivity and Mn2+ disproportionation issues, thereby enhancing electrochemical stability. These advancements position the in-situ polymerization of this binder as a viable option for widespread commercial applications. Abstract High voltage spinel LiNi0.5 Mn1.5O4 (LNMO) is a promising material for next generation lithium-Ion batteries. However, its reactivity near 5 V possess stability and cycling challenges. In this study, a novel integrated approach is employed using a single lithium-ion conducting polymer binder (SLICPB) to prevent interactions with reactive anions and create a protective layer against electrolyte decomposition. The proposed SLICPB in-situ polymerization in the LNMO electrodes simplifies the preparation process, reducing costs. SLICPB properties effectively decrease polarization by concentration. For instance, at a discharge capacity of 68 mAh g−1, the voltage hysteresis difference is 0.31 V, enabling higher capacity at 1 C (a 38 % increase) compared to traditional binder electrodes. Notably, this integrated strategy completely replaces the traditional binder without any need for additives, thus avoiding any extra weight in the electrode preparation. Furthermore, SLICPB properties successfully decreasereactivity and diminish the leaching of Mn2+, as evaluated through differential electrochemical mass spectrometry and electron paramagnetic resonance, respectively. Conflict of interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description batt202300383-sup-0001-misc_information.pdf666.9 KB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. Erakca, M. Baumann, W. Bauer, L. de Biasi, J. Hofmann, B. Bold, M. Weil, iScience 2021, 24, 102437. 10.1016/j.isci.2021.102437 CASPubMedGoogle Scholar 2D. L. Wood, J. Li, S. J. An, Joule 2019, 3, 2884–2888. 10.1016/j.joule.2019.11.002 Web of Science®Google Scholar 3K. I. Ozoemena, M. Kebede, in Nanostructure Sci. Technol. Nanomater. Adv. Batter. Supercapacitors (Eds.: K. I.. Ozoemena, S. Chen), Springer Nature, Switzerland, 2016, p. 567. Google Scholar 4K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc. 1996, 143, 1607–1613. 10.1149/1.1836686 CASWeb of Science®Google Scholar 5L. D. Ellis, J. P. Allen, L. M. Thompson, J. E. Harlow, W. J. Stone, I. G. Hill, J. R. Dahn, J. Electrochem. Soc. 2017, 164, A3518–A3528. 10.1149/2.0191714jes CASWeb of Science®Google Scholar 6B. Rowden, N. Garcia-Araez, Energy Reports 2020, 6, 10–18. 10.1016/j.egyr.2020.02.022 Web of Science®Google Scholar 7J. Lopez, D. G. Mackanic, Y. Cui, Z. Bao, Nat. Rev. Mater. 2019, 4, 312–330. 10.1038/s41578-019-0103-6 CASWeb of Science®Google Scholar 8H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong, J. Chen, G. Cui, ACS Energy Lett. 2019, 4, 2871–2886. 10.1021/acsenergylett.9b01871 CASWeb of Science®Google Scholar 9R. Benedek, J. Phys. Chem. C 2017, 121, 22049–22053. 10.1021/acs.jpcc.7b05940 CASWeb of Science®Google Scholar 10B. Aktekin, M. Valvo, R. I. Smith, M. H. Sørby, F. Lodi Marzano, W. Zipprich, D. Brandell, K. Edström, W. R. Brant, ACS Appl. Energ. Mater. 2019, 2, 3323–3335. 10.1021/acsaem.8b02217 CASWeb of Science®Google Scholar 11Y. Han, Y. S. Jiang, F. Da Yu, L. Deng, W. Ke, S. J. Zhang, L. F. Que, B. Wu, F. Ding, L. Zhao, Z. B. Wang, Adv. Funct. Mater. 2022, 32, DOI 10.1002/adfm.202207285. Google Scholar 12R. Qiao, Y. Wang, P. Olalde-velasco, H. Li, Y. Hu, W. Yang, J. Power Sources 2015, 273, 1120–1126. 10.1016/j.jpowsour.2014.10.013 CASWeb of Science®Google Scholar 13N. P. W. Pieczonka, L. Yang, M. P. Balogh, B. R. Powell, K. Chemelewski, A. Manthiram, S. A. Krachkovskiy, G. R. Goward, M. Liu, J. H. Kim, J. Phys. Chem. C 2013, 117, 22603–22612. 10.1021/jp408717x CASWeb of Science®Google Scholar 14L. Yang, T. Markmaitree, B. L. Lucht, J. Power Sources 2011, 196, 2251–2254. 10.1016/j.jpowsour.2010.09.093 CASWeb of Science®Google Scholar 15J. Xia, L. Ma, J. R. Dahn, J. Power Sources 2015, 287, 377–385. 10.1016/j.jpowsour.2015.04.070 CASWeb of Science®Google Scholar 16Y. Q. Chen, T. Y. Chen, W. D. Hsu, T. Y. Pan, L. J. Her, W. M. Chang, M. Wohlfahrt-Mehrens, H. Yoshitake, C. C. Chang, J. Power Sources 2020, 477, 228473. 10.1016/j.jpowsour.2020.228473 CASWeb of Science®Google Scholar 17L. Porcarelli, A. S. Shaplov, F. Bella, J. R. Nair, D. Mecerreyes, C. Gerbaldi, ACS Energy Lett. 2016, 1, 678–682. 10.1021/acsenergylett.6b00216 CASWeb of Science®Google Scholar 18S. K. Cho, K. S. Oh, J. C. Shin, J. E. Lee, K. M. Lee, J. Cho, W. B. Lee, S. K. Kwak, M. Lee, S. Y. Lee, Adv. Funct. Mater. 2022, 32, DOI 10.1002/adfm.202107753. Google Scholar 19G. Guzmán-González, G. Ramos-Sánchez, L. E. Camacho-Forero, I. González, J. Phys. Chem. C 2019, 123, 17686–17694. 10.1021/acs.jpcc.9b02945 CASWeb of Science®Google Scholar 20G. Guzmán-González, H. J. Avila-Paredes, I. Santos-Mendoza, J. Solid State Electrochem. 2023, 27, 2905–2915DOI 10.1007/s10008-023-05563-1. Google Scholar 21K. Kikuchi, S. Tsuchitani, in Ionic Conductive Polymers BT - Soft Actuators: Materials, Modeling, Applications, and Future Perspectives (Eds.: K. Asaka, H. Okuzaki), Springer Japan, Tokyo, 2014, pp. 81–93. Google Scholar 22C. Wang, Y. Ma, G. Xu, G. Cui, Batter. Energy 2022,1 20220010. Google Scholar 23R. Suarez-Hernandez, G. Ramos-Sánchez, I. O. Santos-Mendoza, G. Guzmán-González, I. González, J. Electrochem. Soc. 2020, 167, 100529. 10.1149/1945-7111/ab95c7 CASWeb of Science®Google Scholar 24R. Del Olmo, G. Guzmán-González, I. O. Santos-Mendoza, D. Mecerreyes, M. Forsyth, N. Casado, Batter. Supercaps 2023, 6, e202200519 DOI 10.1002/batt.202200519. Google Scholar 25H. J. Song, S. H. Jang, J. Ahn, S. H. Oh, T. Yim, J. Power Sources 2019, 416, 1–8. 10.1016/j.jpowsour.2019.01.050 CASWeb of Science®Google Scholar 26Y. Wang, Y. Zhang, S. Wang, S. Dong, C. Dang, W. Hu, D. Y. W. Yu, Adv. Funct. Mater. 2021, 31, 1–10. 10.1002/adfm.202009109 CASWeb of Science®Google Scholar 27S. Wu, Y. Yang, C. Liu, T. Liu, Y. Zhang, B. Zhang, D. Luo, F. Pan, Z. Lin, ACS Energy Lett. 2021, 6, 290–297. 10.1021/acsenergylett.0c02342 CASWeb of Science®Google Scholar 28Y. Liu, R. Zhang, J. Wang, Y. Wang, iScience 2021, 24, 102332. 10.1016/j.isci.2021.102332 CASPubMedWeb of Science®Google Scholar 29C. Yuan, Y. Deng, T. Li, F. Yang, CIRP Ann. - Manuf. Technol. 2017, 66, 53–56. 10.1016/j.cirp.2017.04.109 Web of Science®Google Scholar 30K. W. Knehr, T. Hodson, C. Bommier, G. Davies, A. Kim, D. A. Steingart, Joule 2018, 2, 1146–1159. 10.1016/j.joule.2018.03.016 CASWeb of Science®Google Scholar 31G. Guzmán-González, H. J. Ávila-Paredes, E. Rivera, I. González, ACS Appl. Mater. Interfaces 2018, 10, 30247–30256. 10.1021/acsami.8b02519 CASPubMedWeb of Science®Google Scholar 32J. Ma, Z. Wang, J. Wu, Z. Gu, X. Xin, X. Yao, Batteries 2023, 9,28DOI 10.3390/batteries9010028. Google Scholar 33M. Zhu, J. Ma, Z. Wang, H. He, X. Yao, J. Power Sources 2023, 585, 233651. 10.1016/j.jpowsour.2023.233651 CASGoogle Scholar 34X. Li, M. Tang, X. Feng, I. Hung, A. Rose, P. H. Chien, Z. Gan, Y. Y. Hu, Chem. Mater. 2017, 29, 8282–8291. 10.1021/acs.chemmater.7b02589 CASWeb of Science®Google Scholar 35A. Maurel, M. Armand, S. Grugeon, B. Fleutot, C. Davoisne, H. Tortajada, M. Courty, S. Panier, L. Dupont, J. Electrochem. Soc. 2020, 167, 70536. 10.1149/1945-7111/ab7c38 Web of Science®Google Scholar 36Q. Ma, X. Qi, B. Tong, Y. Zheng, W. Feng, J. Nie, Y.-S. Hu, H. Li, X. Huang, L. Chen, Z. Zhou, ACS Appl. Mater. Interfaces 2016, 8, 29705–29712. 10.1021/acsami.6b10597 CASPubMedWeb of Science®Google Scholar 37J. L. Olmedo-Martínez, M. Pastorio, E. Gabirondo, A. Lorenzetti, H. Sardon, D. Mecerreyes, A. J. Müller, Polymers (Basel). 2021, 13, DOI 10.3390/polym13132097. 10.3390/polym13132097 PubMedGoogle Scholar 38Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, Adv. Mater. 2021, 33, 2100353. 10.1002/adma.202100353 CASPubMedWeb of Science®Google Scholar 39Q. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng, J. Nie, W. Feng, Y. S. Hu, H. Li, X. Huang, L. Chen, M. Armand, Z. Zhou, Angew. Chem. Int. Ed. 2016, 55, 2521–2525. 10.1002/anie.201509299 CASPubMedWeb of Science®Google Scholar 40Y. Chen, W. Huo, M. Lin, L. Zhao, PLoS One 2018, 13, e0189757. PubMedGoogle Scholar 41A. Oishi, R. Tatara, E. Togo, H. Inoue, S. Yasuno, S. Komaba, ACS Appl. Mater. Interfaces 2022, 14, 51808–51818. 10.1021/acsami.2c11695 CASPubMedGoogle Scholar 42Y. Kwon, Y. Lee, S. O. Kim, H. S. Kim, K. J. Kim, D. Byun, W. Choi, ACS Appl. Mater. Interfaces 2018, 10, 29457–29466. 10.1021/acsami.8b08200 CASPubMedWeb of Science®Google Scholar 43K. E. Madsen, K. A. Wade, R. T. Haasch, D. B. Buchholz, K. L. Bassett, B. G. Nicolau, A. A. Gewirth, ACS Appl. Mater. Interfaces 2019, 11, 39890–39901. 10.1021/acsami.9b12912 CASPubMedWeb of Science®Google Scholar 44L. Wu, H. Huo, Q. Zhou, X. Yin, Y. Ma, J. Wang, C. Du, P. Zuo, G. Yin, Y. Gao, ACS Appl. Energy Mater. 2022, 5, 6401−6409DOI 10.1021/acsaem.2c00837. Google Scholar 45Z. Jusys, M. Binder, J. Schnaidt, R. J. Behm, Electrochim. Acta 2019, 314, 188–201. 10.1016/j.electacta.2019.05.076 CASWeb of Science®Google Scholar 46Z. Liu, P. Hu, J. Ma, B. Qin, Z. Zhang, C. Mou, Y. Yao, G. Cui, Electrochim. Acta 2017, 236, 221–227. 10.1016/j.electacta.2017.03.168 CASWeb of Science®Google Scholar 47S. Hein, T. Danner, D. Westhoff, B. Prifling, R. Scurtu, L. Kremer, A. Hoffmann, A. Hilger, M. Osenberg, I. Manke, M. Wohlfahrt-Mehrens, V. Schmidt, A. Latz, J. Electrochem. Soc. 2020, 167, 013546. 10.1149/1945-7111/ab6b1d Web of Science®Google Scholar 48V. A. Nguyen, C. Kuss, J. Electrochem. Soc. 2020, 167, 065501. 10.1149/1945-7111/ab856b CASWeb of Science®Google Scholar 49N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J. L. Tirado, S. Ahmad, G. Garcia-Belmonte, Electrochim. Acta 2015, 163, 323–329. 10.1016/j.electacta.2015.02.148 CASWeb of Science®Google Scholar 50W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol 2020, 11, 1–13. 10.33961/jecst.2019.00528 CASWeb of Science®Google Scholar 51J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, L. O. S. Bulhões, J. Electroanal. Chem. 1998, 452, 229–234. 10.1016/S0022-0728(98)00115-6 CASWeb of Science®Google Scholar 52A. M. Tripathi, W.-N. Su, B. J. Hwang, Chem. Soc. Rev. 2018, 47, 736–851. 10.1039/C7CS00180K CASPubMedWeb of Science®Google Scholar 53B. Michalak, B. B. Berkes, H. Sommer, T. Bergfeldt, T. Brezesinski, J. Janek, Anal. Chem. 2016, 88, 2877–2883. 10.1021/acs.analchem.5b04696 CASPubMedWeb of Science®Google Scholar 54B. B. Berkes, A. Jozwiuk, M. Vračar, H. Sommer, T. Brezesinski, J. Janek, Anal. Chem. 2015, 87, 5878–5883. 10.1021/acs.analchem.5b01237 CASPubMedWeb of Science®Google Scholar 55B. L. D. Rinkel, D. S. Hall, I. Temprano, C. P. Grey, J. Am. Chem. Soc. 2020, 142, 15058–15074. 10.1021/jacs.0c06363 CASPubMedWeb of Science®Google Scholar 56J. N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, H. Li, Energy Storage Mater. 2018, 14, 1–7. 10.1016/j.ensm.2018.02.016 Web of Science®Google Scholar 57P. Mu, H. Zhang, H. Jiang, T. Dong, S. Zhang, C. Wang, J. Li, Y. Ma, S. Dong, G. Cui, J. Am. Chem. Soc. 2021, 143, 18041–18051. 10.1021/jacs.1c06003 CASPubMedWeb of Science®Google Scholar 58H. Nguyen, R. J. Clément, ACS Energy Lett. 2020, 5, 3848–3859. 10.1021/acsenergylett.0c02074 CASWeb of Science®Google Scholar 59J. C. Hestenes, J. T. Sadowski, R. May, L. E. Marbella, ACS Mater. Au 2022, 3, 88–101, DOI 10.1021/acsmaterialsau.2c00060. 10.1021/acsmaterialsau.2c00060 Google Scholar 60M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang, Nano-Micro Lett. 2022, 14, 87. 10.1007/s40820-022-00833-5 CASPubMedWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issuee202300383 ReferencesRelatedInformation