Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 恶性肿瘤 接收机工作特性 放射科 假阳性悖论 无症状的 胰腺导管腺癌 病变 腺癌 癌症 病理 内科学 人工智能 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu,Yingli Chen,Xin Chen,Zaiyi Liu,Jian Zhou,Chuanmiao Xie,Rong Zhang,Hong Lu,Gregory D. Hager,Alan Yuille,Le Lü,Chengwei Shao,Yu Shi,Qi Zhang,Yong‐Min Liang,Ling Zhang,Jianping Lu
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (12): 3033-3043 被引量:39
标识
DOI:10.1038/s41591-023-02640-w
摘要

Abstract Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986–0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yanbeio发布了新的文献求助20
4秒前
4秒前
可爱的函函应助Hlinc采纳,获得10
4秒前
5秒前
luanzhaohui应助稳重元冬采纳,获得50
6秒前
7秒前
Lan完成签到 ,获得积分10
7秒前
读研好难发布了新的文献求助10
7秒前
斯文败类应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得30
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
hilda应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Singularity应助聪慧豁采纳,获得20
12秒前
奇怪人类完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
18秒前
luanzhaohui应助稳重元冬采纳,获得10
19秒前
许起眸发布了新的文献求助10
20秒前
21秒前
小晶豆发布了新的文献求助10
21秒前
22秒前
traveller发布了新的文献求助10
23秒前
传奇3应助畅快访蕊采纳,获得10
23秒前
jay完成签到,获得积分10
25秒前
biuesky完成签到,获得积分10
26秒前
27秒前
狂野电源发布了新的文献求助10
28秒前
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260