Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 对比度(视觉) 放射科 深度学习 比例(比率) 癌症检测 癌症 内科学 人工智能 地理 地图学 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu,Yingli Chen,Xin Chen,Zaiyi Liu,Jian Zhou,Chuanmiao Xie,Rong Zhang,Hong Lu,Gregory D. Hager,Alan Yuille,Le Lü,Chengwei Shao,Yu Shi,Qi Zhang,Tingbo Liang,Ling Zhang,Jianping Lu
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (12): 3033-3043 被引量:71
标识
DOI:10.1038/s41591-023-02640-w
摘要

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饭小心发布了新的文献求助10
刚刚
tanjianxin完成签到,获得积分10
刚刚
wanci应助帅玉玉采纳,获得10
刚刚
Ellie完成签到 ,获得积分10
刚刚
晴天完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
EOFG0PW发布了新的文献求助10
2秒前
buno应助yug采纳,获得10
2秒前
hgh完成签到,获得积分10
2秒前
001关闭了001文献求助
3秒前
研友_VZG7GZ应助Fareth采纳,获得10
3秒前
4秒前
韭菜盒子发布了新的文献求助10
4秒前
4秒前
大意的安白完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
学术蟑螂完成签到,获得积分10
5秒前
5秒前
5秒前
兴奋冷松完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
饭小心完成签到,获得积分20
6秒前
luodd完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
8秒前
小吴发布了新的文献求助10
8秒前
甜甜灵槐发布了新的文献求助10
9秒前
yyang发布了新的文献求助10
9秒前
9秒前
超级水壶发布了新的文献求助10
9秒前
manan发布了新的文献求助10
9秒前
9秒前
fxy完成签到 ,获得积分10
10秒前
爆米花应助大意的安白采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740