Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 对比度(视觉) 放射科 深度学习 比例(比率) 癌症检测 癌症 内科学 人工智能 地理 地图学 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (12): 3033-3043 被引量:171
标识
DOI:10.1038/s41591-023-02640-w
摘要

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
5秒前
5秒前
会写日记的乌龟先生完成签到,获得积分10
5秒前
Raza完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
三人行发布了新的文献求助10
7秒前
7秒前
佩奇666发布了新的文献求助10
9秒前
小成完成签到 ,获得积分10
10秒前
xiaoyao完成签到,获得积分10
11秒前
12秒前
六六完成签到 ,获得积分10
13秒前
赘婿应助千寻采纳,获得10
15秒前
17秒前
云初应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
Mic应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
Mic应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
C花间照应助科研通管家采纳,获得10
18秒前
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
段醒醒发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533