Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 对比度(视觉) 放射科 深度学习 比例(比率) 癌症检测 癌症 内科学 人工智能 地理 地图学 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:29 (12): 3033-3043 被引量:112
标识
DOI:10.1038/s41591-023-02640-w
摘要

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
EASA完成签到,获得积分10
1秒前
萤阳完成签到,获得积分10
1秒前
水木应助CC采纳,获得10
2秒前
ljys发布了新的文献求助10
2秒前
匿名发布了新的文献求助30
2秒前
xx完成签到,获得积分10
3秒前
卫卫完成签到 ,获得积分10
3秒前
木悠发布了新的文献求助10
3秒前
leodu发布了新的文献求助10
4秒前
Ann完成签到,获得积分10
4秒前
4秒前
hzh完成签到 ,获得积分10
4秒前
科研通AI2S应助ly采纳,获得10
4秒前
丘比特应助高新慧采纳,获得10
5秒前
杪秋三十完成签到,获得积分10
5秒前
caixiayin发布了新的文献求助10
5秒前
xx发布了新的文献求助10
6秒前
乐友刘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
爆米花应助fgjkl采纳,获得10
7秒前
暖冬22发布了新的文献求助10
7秒前
7秒前
肖恩完成签到,获得积分20
7秒前
赵雨轩完成签到 ,获得积分10
8秒前
9秒前
匿名完成签到,获得积分10
9秒前
9秒前
9秒前
SciGPT应助陈鑫采纳,获得10
9秒前
sunchengcehng完成签到,获得积分10
10秒前
10秒前
EED发布了新的文献求助10
10秒前
wanci应助北欧海盗采纳,获得10
11秒前
无语的向珊完成签到,获得积分20
11秒前
12秒前
12秒前
mangle完成签到,获得积分10
13秒前
巧克力手印完成签到,获得积分10
13秒前
CodeCraft应助123采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653