Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 对比度(视觉) 放射科 深度学习 比例(比率) 癌症检测 癌症 内科学 人工智能 地理 地图学 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (12): 3033-3043 被引量:171
标识
DOI:10.1038/s41591-023-02640-w
摘要

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
饱满太阳完成签到 ,获得积分10
4秒前
橙子发布了新的文献求助10
4秒前
4秒前
xy发布了新的文献求助10
6秒前
6秒前
伶俐的星月完成签到,获得积分10
7秒前
小二郎应助Horizon采纳,获得10
7秒前
7秒前
lzx完成签到,获得积分10
8秒前
8秒前
小蘑菇应助若米采纳,获得10
8秒前
Georges-09完成签到,获得积分10
9秒前
小马甲应助实验顺利采纳,获得10
9秒前
吴迪发布了新的文献求助10
9秒前
雁过留声完成签到,获得积分10
9秒前
10秒前
brouf完成签到 ,获得积分10
10秒前
个性的荆发布了新的文献求助10
11秒前
llf应助独特的追命采纳,获得20
11秒前
12秒前
满意语芙发布了新的文献求助10
13秒前
14秒前
14秒前
豆豆完成签到,获得积分10
14秒前
wang5945发布了新的文献求助10
15秒前
颖123发布了新的文献求助30
15秒前
apong发布了新的文献求助10
16秒前
16秒前
zzr完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
18秒前
渡月桥完成签到,获得积分10
18秒前
田大明发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901