亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end image splicing localization based on multi-scale features and residual refinement module

计算机科学 人工智能 卷积神经网络 稳健性(进化) 模式识别(心理学) 计算机视觉 像素 残余物 特征提取 平滑的 分割 算法 生物化学 化学 基因
作者
Zhihua Gan,Wenbin Jiang,Xiuli Chai,Yalin Song,Junyang Yu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (06)
标识
DOI:10.1117/1.jei.32.6.063010
摘要

The addition of objects to the original image in splice forgery results in a change in the semantics of the original image, and distribution of these spliced images may bring negative impacts. To solve this issue, many forgery detection methods based on convolutional neural networks are presented. However, they tend to extract deep features, but ignore the importance of shallow semantics. In addition, the complexity of the forgery localization task leads to insufficient accuracy in detecting smaller forged regions. Based on the above problems, an end-to-end image splicing localization network based on multi-scale features and a residual refinement module (RRM) is proposed in this work. Our approach can be roughly divided into two modules: the detection module and the RRM. First, shallow and deep features are extracted from a backbone network, and deep features are then processed by the deeper atrous spatial pyramid pooling (ASPP) module to extract multi-scale features. The deeper ASPP module uses a smaller dilation rate and light convolution, which is more suitable for detecting complex counterfeit images. Second, the shallow features are fused with the multi-scale features to complement the shallow semantic information, such as texture and edges, which further improve the robustness of the model. Finally, the detection network generates coarse prediction maps that are fed to the RRM, and the RRM optimizes these masks by smoothing the boundaries, filling small gaps, and enhancing the edge details, which improves the pixel-level segmentation results for forgery detection. Extensive experimental results on several public datasets show that this method outperforms other state-of-the-art methods in image forgery localization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
5秒前
yaoli0823发布了新的文献求助10
10秒前
20秒前
夏有凉风发布了新的文献求助20
25秒前
思源应助粽子采纳,获得10
47秒前
科研通AI5应助yaoli0823采纳,获得10
49秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
energyharvester完成签到 ,获得积分10
1分钟前
愉快乌发布了新的文献求助20
1分钟前
1分钟前
粽子发布了新的文献求助10
1分钟前
bc发布了新的文献求助30
1分钟前
万能图书馆应助愉快乌采纳,获得20
1分钟前
港港完成签到 ,获得积分10
2分钟前
玄音完成签到,获得积分10
2分钟前
匹诺曹完成签到 ,获得积分10
3分钟前
3分钟前
无花果应助bacteria采纳,获得10
3分钟前
车访枫完成签到 ,获得积分10
3分钟前
一路微笑完成签到,获得积分10
4分钟前
4分钟前
在水一方应助粽子采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
yaoli0823发布了新的文献求助10
5分钟前
粽子发布了新的文献求助10
5分钟前
bacteria发布了新的文献求助10
5分钟前
Verano_4发布了新的文献求助10
5分钟前
阿花完成签到,获得积分10
5分钟前
科研通AI5应助yaoli0823采纳,获得10
5分钟前
5分钟前
阿花发布了新的文献求助30
5分钟前
marco完成签到,获得积分20
6分钟前
marco发布了新的文献求助10
6分钟前
科研通AI5应助marco采纳,获得10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760977
求助须知:如何正确求助?哪些是违规求助? 3304852
关于积分的说明 10131195
捐赠科研通 3018687
什么是DOI,文献DOI怎么找? 1657740
邀请新用户注册赠送积分活动 791708
科研通“疑难数据库(出版商)”最低求助积分说明 754538