Lightwave electronics in condensed matter

数码产品 量子光学 量子 纳米技术 量子技术 材料科学 量子点 准粒子 物理 光电子学 开放量子系统 光学 量子力学 工程类 电气工程 超导电性
作者
Markus Borsch,Manuel Meierhofer,R. Huber,M. Kira
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:8 (10): 668-687 被引量:58
标识
DOI:10.1038/s41578-023-00592-8
摘要

Key properties of quantum materials stem from dynamic interaction chains that connect stable electronic quasiparticles through short-lived coherences, which are difficult to control at their natural time and length scales. Lightwave electronics sculpts the quantum flow of electrons and coherences faster than an oscillation cycle of light by using intense optical-carrier waves as fast biasing fields, which can access multi-electron interaction chains. In this Review, we summarize the key functionalities and the latest advances in lightwave electronics for both fundamental and technological explorations. For example, lightwave-driven ballistic electron transport through dynamically changing band structures has already led to the demonstration of phenomena such as high-harmonic emission and dynamic Bloch oscillations. Lightwave electronic control could also seamlessly convert quantum states between light and matter to create quantum chips that simultaneously exploit electronics for efficient interactions and optics for speed or long coherence lifetimes. Additionally, we present an outlook towards applications of lightwave electronics including quasiparticle colliders to explore quantum phenomena; all-optical band-structure reconstruction in ambient conditions; attoclocks to measure the interaction dynamics of diverse quantum phenomena; ultrafast electron videography to watch electronic reactions unfold; efficient light sources to create compact integration; and petahertz electronics to speed up traditional semiconductor electronics. Lightwave electronics could enable the control of interactions in quantum materials and provide access to the quantum phases and quantum information of condensed-matter systems. This Review discusses the fundamental concepts of lightwave electronics and outlines key advances and potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
愉快豪完成签到,获得积分10
刚刚
刚刚
xuxu完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
wuchang2617完成签到,获得积分10
1秒前
2秒前
kldjss发布了新的文献求助10
2秒前
研友_VZG7GZ应助淡定的竺采纳,获得10
3秒前
明亮尔冬完成签到 ,获得积分10
3秒前
雪sung完成签到,获得积分10
3秒前
4秒前
4秒前
yue发布了新的文献求助10
5秒前
lk关闭了lk文献求助
5秒前
5秒前
lilei发布了新的文献求助10
5秒前
6秒前
unflycn完成签到,获得积分10
6秒前
无极微光应助屹舟采纳,获得20
7秒前
烟花应助毛毛采纳,获得10
7秒前
桐桐应助乐观小之采纳,获得10
7秒前
泥萌完成签到 ,获得积分10
8秒前
叶子发布了新的文献求助10
8秒前
西西发布了新的文献求助10
8秒前
zhili发布了新的文献求助10
9秒前
思源应助yu采纳,获得10
9秒前
E1dent完成签到,获得积分10
9秒前
汉堡包应助xuxu采纳,获得10
9秒前
9秒前
9秒前
10秒前
斯文败类应助Pumpkin采纳,获得10
10秒前
林枫发布了新的文献求助10
10秒前
小彭陪小崔读个研完成签到 ,获得积分10
11秒前
11秒前
DNA完成签到,获得积分10
11秒前
紫轩发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
酷炫天蓉完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381