Lightwave electronics in condensed matter

数码产品 量子光学 量子 纳米技术 量子技术 材料科学 量子点 准粒子 物理 光电子学 开放量子系统 光学 量子力学 工程类 电气工程 超导电性
作者
Markus Borsch,Manuel Meierhofer,R. Huber,M. Kira
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:8 (10): 668-687 被引量:58
标识
DOI:10.1038/s41578-023-00592-8
摘要

Key properties of quantum materials stem from dynamic interaction chains that connect stable electronic quasiparticles through short-lived coherences, which are difficult to control at their natural time and length scales. Lightwave electronics sculpts the quantum flow of electrons and coherences faster than an oscillation cycle of light by using intense optical-carrier waves as fast biasing fields, which can access multi-electron interaction chains. In this Review, we summarize the key functionalities and the latest advances in lightwave electronics for both fundamental and technological explorations. For example, lightwave-driven ballistic electron transport through dynamically changing band structures has already led to the demonstration of phenomena such as high-harmonic emission and dynamic Bloch oscillations. Lightwave electronic control could also seamlessly convert quantum states between light and matter to create quantum chips that simultaneously exploit electronics for efficient interactions and optics for speed or long coherence lifetimes. Additionally, we present an outlook towards applications of lightwave electronics including quasiparticle colliders to explore quantum phenomena; all-optical band-structure reconstruction in ambient conditions; attoclocks to measure the interaction dynamics of diverse quantum phenomena; ultrafast electron videography to watch electronic reactions unfold; efficient light sources to create compact integration; and petahertz electronics to speed up traditional semiconductor electronics. Lightwave electronics could enable the control of interactions in quantum materials and provide access to the quantum phases and quantum information of condensed-matter systems. This Review discusses the fundamental concepts of lightwave electronics and outlines key advances and potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
1秒前
哲别发布了新的文献求助10
1秒前
2秒前
上官若男应助limyao采纳,获得10
2秒前
Steve发布了新的文献求助10
2秒前
熊黛林完成签到,获得积分10
2秒前
wulififi发布了新的文献求助10
4秒前
xiuxiuzhang发布了新的文献求助10
6秒前
可爱的小朋友完成签到,获得积分10
7秒前
FashionBoy应助shenhongru采纳,获得10
7秒前
QQQ完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
斯文败类应助WEAWEA采纳,获得10
11秒前
11秒前
12秒前
科研通AI2S应助如意的冰双采纳,获得10
13秒前
能干的问晴完成签到,获得积分10
14秒前
miemie66发布了新的文献求助10
14秒前
香芋完成签到 ,获得积分10
14秒前
nihao发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
韩野发布了新的文献求助10
19秒前
山海完成签到,获得积分10
19秒前
penpen发布了新的文献求助10
19秒前
20秒前
张芃尧完成签到,获得积分20
21秒前
天天快乐应助CHEN采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
SciGPT应助hearz采纳,获得10
23秒前
23秒前
孙元应助zzz采纳,获得10
24秒前
24秒前
元谷雪发布了新的文献求助10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233