Backpack LiDAR-Based SLAM With Multiple Ground Constraints for Multistory Indoor Mapping

激光雷达 同时定位和映射 点云 计算机科学 计算机视觉 人工智能 遥感 地平面 机器人 移动机器人 地理 电信 天线(收音机)
作者
Baoding Zhou,Haoquan Mo,Shengjun Tang,Xing Zhang,Qingquan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2023.3332916
摘要

High-quality 3D point cloud maps are essential for precise indoor environments modeling. However, constructing such maps in multi-storey indoor environments is challenging due to the presence of narrow non-structural spaces, such as staircases, corners, and corridors with similar textures. Simultaneous localization and mapping (SLAM) in these scenes is particularly difficult, as cumulative errors can lead to incorrect loop closures and drastic degradation in map quality. To address these challenges. This paper proposed a SLAM method base on multiple ground constraints pose optimization (MGCPO) which uses a backpack LiDAR system. The proposed method includes two novel modules. The first, a regression analysis-based scenarios recognition (RASR) module provides a reference for the construction of ground constraints. The second, based on different scene detection results, the MGCPO module constrains the sensor pose using the floor plane to reduce localization errors and effectively decrease loop closure detection errors. Qualitative experiments demonstrate that our proposed method outperforms state-of-the-art methods in challenging scenarios. Quantitative experiments show that our method achieves an error rate of just 1.06% using only LiDAR sensors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙萌萌发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI6应助我不是憨憨采纳,获得10
1秒前
Hero,发布了新的文献求助10
3秒前
秋刀鱼完成签到,获得积分10
3秒前
zsl完成签到,获得积分10
3秒前
3秒前
天真飞绿发布了新的文献求助10
3秒前
che123完成签到,获得积分10
5秒前
霸道恒天发布了新的文献求助10
6秒前
7秒前
7秒前
UNICORN完成签到 ,获得积分10
9秒前
Kevin完成签到,获得积分10
9秒前
9秒前
10秒前
Mei完成签到,获得积分10
10秒前
Liangang完成签到 ,获得积分10
11秒前
Owen应助早稻人采纳,获得10
11秒前
领导范儿应助wtn采纳,获得10
11秒前
nan完成签到,获得积分10
12秒前
方方方发布了新的文献求助10
12秒前
14秒前
14秒前
宁静致远完成签到,获得积分10
15秒前
15秒前
15秒前
郑石发布了新的文献求助10
16秒前
孙萌萌发布了新的文献求助10
16秒前
Henagan发布了新的文献求助30
17秒前
17秒前
17秒前
jam完成签到,获得积分10
17秒前
18秒前
jiahhhao发布了新的文献求助10
19秒前
John发布了新的文献求助10
19秒前
19秒前
好好学习发布了新的文献求助10
19秒前
Keven发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5557012
求助须知:如何正确求助?哪些是违规求助? 4642238
关于积分的说明 14667070
捐赠科研通 4583696
什么是DOI,文献DOI怎么找? 2514330
邀请新用户注册赠送积分活动 1488678
关于科研通互助平台的介绍 1459324