已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Backbone ground motion model through simulated records and XGBoost machine learning algorithm: An application for the Azores plateau (Portugal)

地震学 算法 地质学 蒙特卡罗方法 概率逻辑 力矩震级标度 事件(粒子物理) 高原(数学) 计算机科学 人工智能 数学 统计 几何学 物理 数学分析 量子力学 缩放比例
作者
Shaghayegh Karımzadeh,Amirhossein Mohammadi,Emad Uddin,A. Carvalho,Paulo B. Lourénço
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (2): 668-693 被引量:9
标识
DOI:10.1002/eqe.4040
摘要

Abstract Azores Islands are seismically active due to the tectonic structure of the region. Since the 15th century, they have been periodically shaken by approximately 33 moderate to strong earthquakes, with the most recent one in 1998 ( M w = 6.2). Nonetheless, due to insufficient instrumental seismic data, the region lacks a uniform database of past real records. Ground motion simulation techniques provide alternative region‐specific time series of prospective events for locations with limited seismic networks or regions with a seismic gap of catastrophic earthquake events. This research establishes a local ground motion model (GMM) for the Azores plateau (Portugal) by simulating region‐specific records for constructing a homogeneous dataset. Simulations are accomplished in bedrock using the stochastic finite‐fault approach by employing validated input‐model parameters. The simulation results undergo validation against the 1998 Faial event and comparison with empirical models for volcanic and Pan‐European datasets. A probabilistic numerical technique, namely the Monte‐Carlo simulation, is employed to estimate the outcome of uncertainty associated with these parameters. The results of the simulations are post‐processed to predict the peak ground motion parameters in addition to spectral ordinates. This study uses XGBoost to circumvent the difficulties inherent to linear regression‐based models in establishing the form of equations and coefficients. The input parameters for prediction are moment magnitude ( M w ), Joyner and Boore distance ( R JB ), and focal depth ( FD ). The quantification of GMM uncertainty is accomplished by analyzing the residuals, providing insight into inter‐ and intra‐event uncertainties. The outcomes demonstrate the effectiveness of the suggested model in simulating physical phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yydtly发布了新的文献求助10
1秒前
1秒前
鹏程万里发布了新的文献求助10
2秒前
2秒前
香蕉觅云应助ikea1984采纳,获得10
4秒前
雨山发布了新的文献求助10
5秒前
jack1511发布了新的文献求助10
6秒前
景__完成签到 ,获得积分10
11秒前
lee发布了新的文献求助10
13秒前
14秒前
安静的花卷完成签到,获得积分10
15秒前
BYN完成签到 ,获得积分10
18秒前
19秒前
不加香菜完成签到 ,获得积分10
22秒前
22秒前
yydtly完成签到,获得积分10
29秒前
华仔应助研友_宋文昊采纳,获得30
29秒前
Alger完成签到,获得积分10
29秒前
32秒前
CHENCEN完成签到 ,获得积分10
34秒前
37秒前
38秒前
ZMX完成签到,获得积分10
41秒前
万能图书馆应助sny采纳,获得10
41秒前
42秒前
44秒前
45秒前
英俊的铭应助研友_宋文昊采纳,获得10
47秒前
48秒前
Yuu发布了新的文献求助10
48秒前
52秒前
研友_宋文昊完成签到,获得积分10
53秒前
我是老大应助xdm采纳,获得10
53秒前
小老鼠大鸭梨完成签到,获得积分20
54秒前
虚拟的落雁完成签到 ,获得积分10
56秒前
科研通AI5应助科研通管家采纳,获得10
56秒前
shhoing应助科研通管家采纳,获得30
56秒前
李健应助科研通管家采纳,获得10
56秒前
Grayball应助科研通管家采纳,获得10
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671119
求助须知:如何正确求助?哪些是违规求助? 3228030
关于积分的说明 9778011
捐赠科研通 2938277
什么是DOI,文献DOI怎么找? 1609784
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962