ChatGPT Knows Your Attacks: Synthesizing Attack Trees Using LLMs

计算机科学 树(集合论) 质量(理念) 计算机安全 数据科学 数学 数学分析 哲学 认识论
作者
Olga Gadyatskaya,Dalia Papuc
出处
期刊:Communications in computer and information science 卷期号:: 245-260 被引量:1
标识
DOI:10.1007/978-981-99-7969-1_18
摘要

Attack trees are a popular method to represent cyberattack scenarios. It is often challenging for organizations to design attack trees for relevant systems and scenarios, as this requires advanced security expertise and the engagement of many stakeholders. In recent years, many studies in academic literature have proposed methods for automating attack tree creation from system models or from libraries of attack patterns. However, these approaches are not yet mature enough to be of practical use in organizations. The advent of large language models (LLMs) opens new opportunities for helping organizations in designing attack trees. We can envisage that organizations would be able to speed up attack tree design and benefit from LLMs like ChatGPT if they could rely on the quality of produced models. In this study, we investigate the feasibility of using ChatGPT to synthesize attack trees for specific scenarios. We propose a method to make ChatGPT to output attack tree-like models, we propose an approach to evaluate the quality of synthesized attack trees, and we evaluate these in two case studies. Our results show that LLMs like ChatGPT can indeed be valuable companions for designing attack trees. Yet, as expected, ChatGPT often fails to capture the meaning of the refinement operators, and the human analyst engaging with ChatGPT still needs to monitor the quality of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘捕发布了新的文献求助10
1秒前
希文完成签到,获得积分10
1秒前
biozhp发布了新的文献求助10
2秒前
zack完成签到,获得积分10
5秒前
Nee发布了新的文献求助10
5秒前
Ll_l完成签到,获得积分10
7秒前
8秒前
9秒前
搜集达人应助Tancl1235采纳,获得10
9秒前
10秒前
wang发布了新的文献求助10
10秒前
10秒前
orixero应助zack采纳,获得10
13秒前
无奈初雪完成签到,获得积分10
14秒前
Espionage发布了新的文献求助10
15秒前
上官若男应助jsq采纳,获得10
15秒前
15秒前
大个应助踏雪飞鸿采纳,获得10
16秒前
16秒前
郑159753发布了新的文献求助10
16秒前
顺利毕业发布了新的文献求助10
20秒前
wang完成签到,获得积分10
21秒前
21秒前
22秒前
小蘑菇应助疯狂的炳采纳,获得10
23秒前
英俊的铭应助ZiXuanCui采纳,获得60
26秒前
liang完成签到,获得积分10
26秒前
半城微凉应助wang采纳,获得10
27秒前
28秒前
jsq发布了新的文献求助10
29秒前
小二郎应助辉仔采纳,获得10
29秒前
顺利毕业完成签到,获得积分10
29秒前
32秒前
二十四桥发布了新的文献求助10
33秒前
悦耳人生发布了新的文献求助10
33秒前
jsq完成签到,获得积分20
34秒前
34秒前
HuiHui完成签到,获得积分10
35秒前
酷波er应助晚风采纳,获得10
35秒前
zss完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517