ChatGPT Knows Your Attacks: Synthesizing Attack Trees Using LLMs

计算机科学 树(集合论) 质量(理念) 计算机安全 数据科学 数学 认识论 数学分析 哲学
作者
Olga Gadyatskaya,Dalia Papuc
出处
期刊:Communications in computer and information science 卷期号:: 245-260 被引量:1
标识
DOI:10.1007/978-981-99-7969-1_18
摘要

Attack trees are a popular method to represent cyberattack scenarios. It is often challenging for organizations to design attack trees for relevant systems and scenarios, as this requires advanced security expertise and the engagement of many stakeholders. In recent years, many studies in academic literature have proposed methods for automating attack tree creation from system models or from libraries of attack patterns. However, these approaches are not yet mature enough to be of practical use in organizations. The advent of large language models (LLMs) opens new opportunities for helping organizations in designing attack trees. We can envisage that organizations would be able to speed up attack tree design and benefit from LLMs like ChatGPT if they could rely on the quality of produced models. In this study, we investigate the feasibility of using ChatGPT to synthesize attack trees for specific scenarios. We propose a method to make ChatGPT to output attack tree-like models, we propose an approach to evaluate the quality of synthesized attack trees, and we evaluate these in two case studies. Our results show that LLMs like ChatGPT can indeed be valuable companions for designing attack trees. Yet, as expected, ChatGPT often fails to capture the meaning of the refinement operators, and the human analyst engaging with ChatGPT still needs to monitor the quality of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助舒心海蓝采纳,获得10
1秒前
跳跃萍完成签到,获得积分10
1秒前
nini发布了新的文献求助10
2秒前
wdw2501发布了新的文献求助10
2秒前
Lucas应助舒适柚子采纳,获得10
3秒前
wjx发布了新的文献求助10
3秒前
Spencer完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助misaka采纳,获得10
3秒前
3秒前
4秒前
复方蛋酥卷完成签到,获得积分10
4秒前
ll发布了新的文献求助10
4秒前
4秒前
脑洞疼应助bofu采纳,获得10
5秒前
zhangkx23完成签到,获得积分10
5秒前
刘佳佳完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
Juid应助俏皮的惜灵采纳,获得50
7秒前
ganluren完成签到,获得积分10
7秒前
Jasper应助秋子采纳,获得10
8秒前
DJMZ发布了新的文献求助10
8秒前
8秒前
jiao完成签到,获得积分10
9秒前
传奇3应助jia采纳,获得10
9秒前
超级的金毛完成签到,获得积分10
9秒前
yk发布了新的文献求助10
10秒前
10秒前
yc发布了新的文献求助10
11秒前
Dfish发布了新的文献求助10
11秒前
我没那么郝完成签到,获得积分10
12秒前
小云完成签到,获得积分10
13秒前
槐夏2466发布了新的文献求助10
13秒前
关灯发布了新的文献求助10
13秒前
14秒前
Sawyer应助nini采纳,获得10
14秒前
xeiwei应助nini采纳,获得10
14秒前
lz完成签到,获得积分10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300