Near-Infrared-Driven β-NaYF4:Yb,Tm,Gd/Ni-MOF Nanocomposites for Efficient Sterilization and Degradation of Organic Contaminants

傅里叶变换红外光谱 光催化 纳米复合材料 罗丹明B 单线态氧 透射电子显微镜 核化学 降级(电信) 化学 材料科学 红外线的 纳米技术 光化学 化学工程 氧气 催化作用 物理 有机化学 光学 电信 计算机科学 工程类
作者
Tingchao He,Chunhui Meng,Hamza Yasir Adamu,Chunli Li,Yuxin Huang,Yu Liu,Le Li,Sihan Chen,Deshuai Zhen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (23): 21721-21732 被引量:4
标识
DOI:10.1021/acsanm.3c03944
摘要

The β-NaYF4:Yb,Tm,Gd/Ni-MOF (UCNR/Ni-MOF, UNM) nanocomposites were successfully synthesized via a simple two-step hydrothermal method. Excited by a 980 nm laser, UCNRs produce ultraviolet and visible light, activating the Ni-MOF and generating a significant quantity of electron/hole pairs (e–/h+). These e–/h+ pairs can then react with O2 and H2O to create reactive oxygen species (ROS), which can be used for antibacterial purposes. Characterization techniques including transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were utilized to analyze the structure, optical properties, composition, and morphology of the UNM nanocomposites. The photocatalytic performance of UNM was evaluated by testing its ability to kill E. coli and S. aureus as well as degrade rhodamine B (RhB) under 980 nm near-infrared light irradiation (1.0 W/cm2). After 18 min of reaction, the bactericidal rates against E. coli and S. aureus were observed to be roughly 100 and 99.99%, respectively. Similarly, ∼98.49% of RhB was degraded within 180 min. Free radical capture experiments were conducted to further investigate the mechanism of UNM photocatalysis. The main active species involved were determined to be ·O2– and h+. In addition, UNM was able to retain ∼86.25% of its degradation rate toward RhB after four cycles of cycling experiments, which demonstrated its good stability. Therefore, this study provides a potential strategy to eliminate bacteria and degrade hazardous pollutants in order to mitigate environmental pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助憨鬼憨切采纳,获得10
2秒前
2秒前
3秒前
greenPASS666完成签到,获得积分10
5秒前
KYN发布了新的文献求助10
5秒前
6秒前
meng发布了新的文献求助10
6秒前
7秒前
Leon发布了新的文献求助10
7秒前
axunQAQ发布了新的文献求助10
7秒前
111发布了新的文献求助10
8秒前
9秒前
cc发布了新的文献求助10
12秒前
程勋航完成签到,获得积分10
12秒前
HH完成签到,获得积分10
12秒前
陆千万完成签到,获得积分10
14秒前
我是125应助老疯智采纳,获得10
14秒前
LEE发布了新的文献求助10
14秒前
Leon完成签到,获得积分10
17秒前
愉快的紫丝完成签到,获得积分10
17秒前
19秒前
玩命的紫南完成签到 ,获得积分10
20秒前
20秒前
20秒前
剁辣椒蒸鱼头完成签到 ,获得积分10
22秒前
牛牛要当院士喽完成签到,获得积分10
22秒前
22秒前
香蕉觅云应助lyt采纳,获得10
23秒前
WJ发布了新的文献求助10
24秒前
25秒前
dbq完成签到 ,获得积分10
25秒前
Owen应助reck采纳,获得10
27秒前
王淳完成签到 ,获得积分10
27秒前
28秒前
29秒前
高高的天亦完成签到 ,获得积分10
30秒前
追寻书白完成签到,获得积分20
31秒前
晚街听风完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849