Novel Architecture of Energy Management Systems Based on Deep Reinforcement Learning in Microgrid

微电网 能源管理 计算机科学 能源管理系统 盈利能力指数 强化学习 调度(生产过程) 需求响应 负荷管理 电力系统 储能 分布式计算 可靠性工程 工程类 能量(信号处理) 功率(物理) 控制(管理) 运营管理 人工智能 物理 经济 电气工程 统计 量子力学 数学 财务
作者
Seongwoo Lee,Joonho Seon,Young Ghyu Sun,Soo Hyun Kim,Chanuk Kyeong,Dong In Kim,Jin Young Kim
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 1646-1658 被引量:7
标识
DOI:10.1109/tsg.2023.3317096
摘要

In microgrids, energy management systems (EMS) have been considered essential systems to optimize energy scheduling, control and operation for reliable power systems. Conventional EMS researches have been predominantly performed by employing demand-side management and demand response (DR). Nonetheless, multi-action control in EMS is confronted with operational challenges in terms of the profitability and stability. In this paper, energy information systems (EIS), energy storage systems (ESS), energy trading risk management systems (ETRMS), and automatic DR (ADR) are integrated to efficiently manage the profitability and stability of the whole EMS by optimal energy scheduling. The proposed microgrid EMS architecture is optimized by using proximal policy optimization (PPO) algorithm, which has been known to have good performance in terms of learning stability and complexity. A novel performance metric, represented as a burden of load and generation (BoLG), is proposed to evaluate the energy management performance. The BoLG is incorporated into the reward settings for optimizing the management of multi-action controls such as load shifting, energy charging-discharging, and transactions. From the simulation results, it is confirmed that the proposed architecture can improve energy management performance with the proper trade-off between stability and profitability, compared to dynamic programming (DP)-based and double deep Q-network (DDQN)-based operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李潇潇完成签到 ,获得积分10
1秒前
1秒前
希望天下0贩的0应助Dravia采纳,获得30
2秒前
胖大海发布了新的文献求助10
3秒前
冷静傲丝完成签到 ,获得积分10
3秒前
3秒前
天天发布了新的文献求助10
4秒前
5秒前
JUST完成签到,获得积分10
5秒前
6秒前
XudongHou完成签到,获得积分10
6秒前
7秒前
王雯雯发布了新的文献求助10
9秒前
235完成签到,获得积分10
10秒前
心灵美的宛丝完成签到,获得积分10
10秒前
科研通AI2S应助mariawang采纳,获得10
11秒前
Mic发布了新的文献求助10
12秒前
235发布了新的文献求助30
13秒前
14秒前
居选金关注了科研通微信公众号
14秒前
minmi完成签到,获得积分20
15秒前
15秒前
在水一方应助小李博士采纳,获得10
15秒前
一米七的小柯基完成签到,获得积分10
16秒前
欣欣发布了新的文献求助10
17秒前
万事胜意发布了新的文献求助10
19秒前
21秒前
Rondab应助Mic采纳,获得10
21秒前
21秒前
22秒前
22秒前
唐诗阅发布了新的文献求助10
22秒前
柯一一应助柯南采纳,获得10
23秒前
23秒前
23秒前
乐观的寻绿完成签到,获得积分10
25秒前
25秒前
25秒前
Dravia发布了新的文献求助30
26秒前
归尘应助任老三采纳,获得10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571