Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning

价值(数学) 基因组学 医学 黑色素瘤 医学影像学 计算生物学 计算机科学 生物信息学 人工智能 医学物理学 生物 基因组 基因 癌症研究 机器学习 遗传学
作者
Xiaoyuan Li,Xiaoqian Yu,Duanliang Tian,Yiran Liu,Li Ding
出处
期刊:Medical Physics [Wiley]
卷期号:50 (11): 7049-7059 被引量:2
标识
DOI:10.1002/mp.16748
摘要

Abstract Background Cutaneous melanoma (CM) is the most common malignant tumor of the skin. Our study aimed to investigate the prognostic value of pathomics signatures for CM by combining pathomics and genomics. Purpose The purpose of this study was to explore the potential application value of pathomics signatures. Methods Pathology full scans, clinical information, and genomics data for CM patients were downloaded from The Cancer Genome Atlas (TCGA) database. Exploratory data analysis (EDA) was used to visualize patient characteristics. Genes related to a poorer prognosis were screened through differential analysis. Survival analysis was performed to assess the prognostic value of gene and pathomics signatures. Artificial neural network (ANN) models predicted prognosis using signatures and genes. Correlation analysis was used to explore signature‐gene links. Results The clinical traits for 468 CM samples and the genomic data and pathology images for 471 CM samples were obtained from the TCGA database. The EDA results combined with multiple machine learning (ML) models suggested that the top 5 clinical traits in terms of importance were age, biopsy site, T stage, N stage and overall disease stage, and the eight ML models had a precision lower than 0.56. A total of 60 differentially expressed genes were obtained by comparing sequencing data. A total of 413 available quantitative signatures of each pathomics image were obtained with CellProfile software. The precision of the binary classification model based on pathomics signatures was 0.99, with a loss value of 1.7119e‐04. The precision of the binary classification model based on differentially expressed genes was 0.98, with a loss value of 0.1101. The precision of the binary classification model based on pathomics signatures and differentially expressed genes was 0.97, with a loss value of 0.2088. The survival analyses showed that the survival rate of the high‐risk group based on gene expression and pathomics signatures was significantly lower than that of the low‐risk group. A total of 222 pathomics signatures and 51 differentially expressed genes were analyzed for survival with p ‐values of less than 0.05. There was a certain correlation between some pathomics signatures and differential gene expression involving ANO2, LINC00158, NDNF, ADAMTS15, and ADGRB3, etc. Conclusion This study evaluated the prognostic significance of pathomics signatures and differentially expressed genes in CM patients. Three ANN models were developed, and all achieved accuracy rates higher than 97%. Specifically, the pathomics signature‐based ANN model maintained a remarkable accuracy of 99%. These findings highlight the CellProfile + ANN model as an excellent choice for prognostic prediction in CM patients. Furthermore, our correlation analysis experimentally demonstrated a preliminary link between disease quantification and qualitative changes. Among various features, including M stage and treatments received, special attention should be given to age, biopsy site, T stage, N stage, and overall disease stage in CM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xrkxrk完成签到 ,获得积分10
2秒前
抹茶冰淇淋完成签到 ,获得积分10
2秒前
十月完成签到 ,获得积分10
2秒前
lixiangrui110完成签到,获得积分10
2秒前
大魔王完成签到,获得积分10
5秒前
和谐曼凝完成签到 ,获得积分10
5秒前
友好盼波发布了新的文献求助10
6秒前
qianci2009完成签到,获得积分10
6秒前
fashing完成签到,获得积分10
7秒前
精明寒松完成签到 ,获得积分10
8秒前
曹文鹏完成签到 ,获得积分10
8秒前
衢夭完成签到,获得积分10
9秒前
瞿访云完成签到,获得积分10
10秒前
11秒前
Nivas给Nivas的求助进行了留言
13秒前
留胡子的小兔子完成签到 ,获得积分10
13秒前
CDabin完成签到,获得积分10
14秒前
SML完成签到,获得积分10
14秒前
Jabowoo完成签到,获得积分10
15秒前
滴滴滴完成签到,获得积分10
15秒前
zhaozhao完成签到,获得积分10
16秒前
迷人嫣然完成签到,获得积分10
17秒前
薛乎虚发布了新的文献求助10
18秒前
靓丽的熠彤完成签到,获得积分10
19秒前
一个有点长的序完成签到 ,获得积分10
19秒前
zhiwei完成签到 ,获得积分0
20秒前
luan发布了新的文献求助10
21秒前
qiuqiu完成签到 ,获得积分10
23秒前
是我呀小夏完成签到 ,获得积分10
23秒前
烟花应助稳重的蜜蜂采纳,获得10
23秒前
孟伟完成签到,获得积分10
23秒前
xtutang完成签到,获得积分10
27秒前
胖小羊完成签到 ,获得积分10
28秒前
汉堡包应助孟伟采纳,获得10
29秒前
aniu完成签到,获得积分10
29秒前
甜蜜乐松完成签到 ,获得积分10
31秒前
Pa1mary发布了新的文献求助30
32秒前
科研通AI2S应助xtutang采纳,获得10
33秒前
sunwsmile完成签到 ,获得积分10
33秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180053
求助须知:如何正确求助?哪些是违规求助? 2830396
关于积分的说明 7976790
捐赠科研通 2491986
什么是DOI,文献DOI怎么找? 1329153
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954