已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning

价值(数学) 基因组学 医学 黑色素瘤 医学影像学 计算生物学 计算机科学 生物信息学 人工智能 医学物理学 生物 基因组 基因 癌症研究 机器学习 遗传学
作者
Xiaoyuan Li,Xiaoqian Yu,Duanliang Tian,Yiran Liu,Li Ding
出处
期刊:Medical Physics [Wiley]
卷期号:50 (11): 7049-7059 被引量:2
标识
DOI:10.1002/mp.16748
摘要

Abstract Background Cutaneous melanoma (CM) is the most common malignant tumor of the skin. Our study aimed to investigate the prognostic value of pathomics signatures for CM by combining pathomics and genomics. Purpose The purpose of this study was to explore the potential application value of pathomics signatures. Methods Pathology full scans, clinical information, and genomics data for CM patients were downloaded from The Cancer Genome Atlas (TCGA) database. Exploratory data analysis (EDA) was used to visualize patient characteristics. Genes related to a poorer prognosis were screened through differential analysis. Survival analysis was performed to assess the prognostic value of gene and pathomics signatures. Artificial neural network (ANN) models predicted prognosis using signatures and genes. Correlation analysis was used to explore signature‐gene links. Results The clinical traits for 468 CM samples and the genomic data and pathology images for 471 CM samples were obtained from the TCGA database. The EDA results combined with multiple machine learning (ML) models suggested that the top 5 clinical traits in terms of importance were age, biopsy site, T stage, N stage and overall disease stage, and the eight ML models had a precision lower than 0.56. A total of 60 differentially expressed genes were obtained by comparing sequencing data. A total of 413 available quantitative signatures of each pathomics image were obtained with CellProfile software. The precision of the binary classification model based on pathomics signatures was 0.99, with a loss value of 1.7119e‐04. The precision of the binary classification model based on differentially expressed genes was 0.98, with a loss value of 0.1101. The precision of the binary classification model based on pathomics signatures and differentially expressed genes was 0.97, with a loss value of 0.2088. The survival analyses showed that the survival rate of the high‐risk group based on gene expression and pathomics signatures was significantly lower than that of the low‐risk group. A total of 222 pathomics signatures and 51 differentially expressed genes were analyzed for survival with p ‐values of less than 0.05. There was a certain correlation between some pathomics signatures and differential gene expression involving ANO2, LINC00158, NDNF, ADAMTS15, and ADGRB3, etc. Conclusion This study evaluated the prognostic significance of pathomics signatures and differentially expressed genes in CM patients. Three ANN models were developed, and all achieved accuracy rates higher than 97%. Specifically, the pathomics signature‐based ANN model maintained a remarkable accuracy of 99%. These findings highlight the CellProfile + ANN model as an excellent choice for prognostic prediction in CM patients. Furthermore, our correlation analysis experimentally demonstrated a preliminary link between disease quantification and qualitative changes. Among various features, including M stage and treatments received, special attention should be given to age, biopsy site, T stage, N stage, and overall disease stage in CM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
闪闪的草莓完成签到,获得积分10
5秒前
5秒前
简让完成签到 ,获得积分10
5秒前
Radisson完成签到,获得积分10
7秒前
nadia发布了新的文献求助10
8秒前
9秒前
9秒前
zhongzihao完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
小余同学完成签到 ,获得积分10
11秒前
木之曲直发布了新的文献求助10
11秒前
Bi8bo发布了新的文献求助10
12秒前
electricelectric应助wyy采纳,获得30
12秒前
12秒前
帅气凝云发布了新的文献求助10
14秒前
想游泳的鹰完成签到,获得积分10
15秒前
礼貌吗发布了新的文献求助10
15秒前
莎锅抄手发布了新的文献求助10
15秒前
牛马完成签到 ,获得积分10
15秒前
Miranda发布了新的文献求助10
18秒前
小丸子完成签到,获得积分10
20秒前
HuanChen完成签到 ,获得积分10
21秒前
飞飞完成签到,获得积分10
21秒前
zzzz发布了新的文献求助10
22秒前
贪玩草丛发布了新的文献求助10
23秒前
喜悦寒凝完成签到,获得积分10
23秒前
脑洞疼应助帅气凝云采纳,获得10
26秒前
27秒前
27秒前
包容的绿蕊完成签到,获得积分20
27秒前
29秒前
萱萱发布了新的文献求助10
29秒前
GingerF应助科研通管家采纳,获得50
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
大模型应助科研通管家采纳,获得10
30秒前
lmy应助科研通管家采纳,获得20
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209697
求助须知:如何正确求助?哪些是违规求助? 4386894
关于积分的说明 13661870
捐赠科研通 4246307
什么是DOI,文献DOI怎么找? 2329694
邀请新用户注册赠送积分活动 1327444
关于科研通互助平台的介绍 1279811