Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning

价值(数学) 基因组学 医学 黑色素瘤 医学影像学 计算生物学 计算机科学 生物信息学 人工智能 医学物理学 生物 基因组 基因 癌症研究 机器学习 遗传学
作者
Xiaoyuan Li,Xiaoqian Yu,Duanliang Tian,Yiran Liu,Li Ding
出处
期刊:Medical Physics [Wiley]
卷期号:50 (11): 7049-7059 被引量:2
标识
DOI:10.1002/mp.16748
摘要

Abstract Background Cutaneous melanoma (CM) is the most common malignant tumor of the skin. Our study aimed to investigate the prognostic value of pathomics signatures for CM by combining pathomics and genomics. Purpose The purpose of this study was to explore the potential application value of pathomics signatures. Methods Pathology full scans, clinical information, and genomics data for CM patients were downloaded from The Cancer Genome Atlas (TCGA) database. Exploratory data analysis (EDA) was used to visualize patient characteristics. Genes related to a poorer prognosis were screened through differential analysis. Survival analysis was performed to assess the prognostic value of gene and pathomics signatures. Artificial neural network (ANN) models predicted prognosis using signatures and genes. Correlation analysis was used to explore signature‐gene links. Results The clinical traits for 468 CM samples and the genomic data and pathology images for 471 CM samples were obtained from the TCGA database. The EDA results combined with multiple machine learning (ML) models suggested that the top 5 clinical traits in terms of importance were age, biopsy site, T stage, N stage and overall disease stage, and the eight ML models had a precision lower than 0.56. A total of 60 differentially expressed genes were obtained by comparing sequencing data. A total of 413 available quantitative signatures of each pathomics image were obtained with CellProfile software. The precision of the binary classification model based on pathomics signatures was 0.99, with a loss value of 1.7119e‐04. The precision of the binary classification model based on differentially expressed genes was 0.98, with a loss value of 0.1101. The precision of the binary classification model based on pathomics signatures and differentially expressed genes was 0.97, with a loss value of 0.2088. The survival analyses showed that the survival rate of the high‐risk group based on gene expression and pathomics signatures was significantly lower than that of the low‐risk group. A total of 222 pathomics signatures and 51 differentially expressed genes were analyzed for survival with p ‐values of less than 0.05. There was a certain correlation between some pathomics signatures and differential gene expression involving ANO2, LINC00158, NDNF, ADAMTS15, and ADGRB3, etc. Conclusion This study evaluated the prognostic significance of pathomics signatures and differentially expressed genes in CM patients. Three ANN models were developed, and all achieved accuracy rates higher than 97%. Specifically, the pathomics signature‐based ANN model maintained a remarkable accuracy of 99%. These findings highlight the CellProfile + ANN model as an excellent choice for prognostic prediction in CM patients. Furthermore, our correlation analysis experimentally demonstrated a preliminary link between disease quantification and qualitative changes. Among various features, including M stage and treatments received, special attention should be given to age, biopsy site, T stage, N stage, and overall disease stage in CM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Srynotme采纳,获得10
刚刚
1秒前
1秒前
1秒前
阿秃完成签到,获得积分20
1秒前
小二郎应助CEJ采纳,获得10
2秒前
秃顶双马尾完成签到,获得积分20
3秒前
三三发布了新的文献求助10
3秒前
研友_VZG7GZ应助Anar采纳,获得10
4秒前
4秒前
阿秃发布了新的文献求助10
5秒前
zhehuai发布了新的文献求助10
5秒前
煜琪发布了新的文献求助10
5秒前
5秒前
无花果应助小马过河采纳,获得10
5秒前
toutou完成签到,获得积分10
6秒前
桐桐应助学术混子采纳,获得10
7秒前
7秒前
wuyou992完成签到,获得积分10
8秒前
hp发布了新的文献求助30
8秒前
8秒前
8秒前
seaboy3完成签到,获得积分10
9秒前
麻祖完成签到 ,获得积分10
9秒前
可爱的函函应助LXiao采纳,获得10
9秒前
10秒前
11秒前
隐形曼青应助zspzz采纳,获得10
11秒前
11秒前
11秒前
orixero应助铜豌豆采纳,获得10
12秒前
12秒前
12秒前
12秒前
三三完成签到,获得积分10
13秒前
www完成签到,获得积分10
13秒前
zyy621发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助30
13秒前
LIXI发布了新的文献求助10
13秒前
李爱国应助cc采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《电路与模拟电子电路PSpice仿真分析及设计》 500
《电子电路原理》 500
《数字电子技术》 500
半导体器件物理 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011730
求助须知:如何正确求助?哪些是违规求助? 3551477
关于积分的说明 11308909
捐赠科研通 3285728
什么是DOI,文献DOI怎么找? 1811136
邀请新用户注册赠送积分活动 886786
科研通“疑难数据库(出版商)”最低求助积分说明 811653