Prediction of soil organic matter by Kubelka-Munk based airborne hyperspectral moisture removal model

高光谱成像 含水量 反演(地质) 水分 遥感 环境科学 土壤科学 支持向量机 计算机科学 人工智能 地质学 地理 气象学 岩土工程 古生物学 构造盆地
作者
Depin Ou,Kun Tan,Jie Li,Zhifeng Wu,Liangbo Zhao,Jianwei Ding,Xue Wang,Bin Zou
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103493-103493 被引量:5
标识
DOI:10.1016/j.jag.2023.103493
摘要

Obtaining high-precision soil organic matter (SOM) spatial distribution information is of great significance for applications such as precision agriculture. But in the current hyperspectral SOM inversion work, soil moisture greatly influences the representation of the sensitive information of SOM on the spectrum. Therefore, a Kubelka-Munk theory based spectral correction model for soil moisture removal is proposed to improve the spectral sensitivity of SOM. Firstly, the soil moisture content was obtained by the use of a Kubelka-Munk based physical soil moisture model and an unmixing method. Then, the spectral correction model for soil moisture removal was implemented based on the quantitative description of the Beer-Lambert law. The results show that the proposed spectral correction model for soil moisture removal can significantly enhance the expression of the sensitive spectral features of SOM, especially for the short-wave infrared range. After moisture removal, the imaging spectral data were used for inversion, using the sensitive band at 0.69 μm and a support vector machine regression (SVR) modeling method. The Kubelka-Munk moisture removal model for soil moisture removal can improve the accuracy of SOM inversion by at least 22% comparing with the 0.69 μm original spectral inversion model, with R2 of 0.42. Moreover, the proposed model can also improve the accuracy of SOM inversion by 19% for the SVR statistical regression method, with R2 of 0.69. Finally, the SOM distribution maps based on sensitive band model and SVR regression method were analyzed. Findings show that the two methods have high consistency, but the statistical method obtains better details of the SOM spatial distribution, due to its higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨淋沐风完成签到,获得积分10
刚刚
安宁关注了科研通微信公众号
1秒前
1秒前
2秒前
liyi2022完成签到,获得积分10
2秒前
kaka完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Mississippiecho完成签到,获得积分10
6秒前
ardejiang发布了新的文献求助10
6秒前
吴帆完成签到,获得积分10
6秒前
呆崽发布了新的文献求助10
7秒前
Mango完成签到 ,获得积分10
7秒前
科研通AI2S应助Yt采纳,获得10
8秒前
胖心怡完成签到,获得积分10
8秒前
快乐应助jhhh采纳,获得10
8秒前
9秒前
高大的迎梦完成签到,获得积分10
9秒前
知性的绮兰完成签到,获得积分10
9秒前
可可萝oxo发布了新的文献求助10
9秒前
加加油完成签到,获得积分10
9秒前
搞怪莫茗发布了新的文献求助10
9秒前
9秒前
SHIJIE发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
蟹堡王的秘方完成签到,获得积分10
13秒前
在逃安琪完成签到,获得积分10
13秒前
玫瑰星云完成签到,获得积分10
13秒前
hotcas完成签到,获得积分10
13秒前
14秒前
英姑应助jimmyk采纳,获得10
15秒前
sword完成签到,获得积分10
15秒前
flb123完成签到,获得积分10
15秒前
Kk完成签到,获得积分10
16秒前
16秒前
Hello应助xiaowanzi采纳,获得10
16秒前
宗沛柔发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012